MH500 series Servo-hydraulic System for Injection Molding Machines

Manual

SHANGHAI KINWAY TECHNOLOGIES, INC.

Preface

The MH500 series servo product is specialized for such hydraulic equipments as injection molding machines and die casting machines, etc. It is equipped with high performance vector control and characterized by energy-conservation, high precision, extraordinary efficiency and outstanding durability. Besides, its multiple external interfaces and CAN communication interface facilitate configuration of a parallel system with multiple pumps and control of the hydraulic system with large flow.

Thank you for purchasing this MH500 series servo system made by Kinway. We suggest a close reading of this manual for proper operation and keeping it in safe for reference at any time.

This manual is used for:

- 1) Engineers of this control system
- 2) Installing or wiring professionals
- 3) Users or maintenance personnel
- Adhere to the following items before complete reading of this manual:
 - 1) The installation environment shall be clean of water vapor, corrosive gas and inflammable gas.
 - 2) Forbid directly wiring power of grid and terminals of U, V and W on the motor. Otherwise any wrong wiring may cause irrevocable damage to the driver and the motor.
 - 3) Make sure safety ground of the earth wire.

4) Do not disassemble the driver, motor and pump or change wiring when they are energized.

5) Do not touch heat sink during operation lest empyrosis.

Kinway provides thorough aftersale and maintenance services for the products. Any attempt to disassemble or change the driver, LED panel or motor shell without permission can damage them and void your warranty. In this case, Kinway bears no responsibility for its consequences.

You can consult your dealer or our contact center if any problem occurs in the process of operation.

Contents

PREFACE1					
CONTENTS					
1.	SAFE	TY CAUTIONS1	-		
	1.1.	SAFETY CONCEPTS1	-		
	1.2.	SAFETY INSTRUCTION 2	-		
2.	PRO	DUCT INFORMATION 5	-		
	2.1.	PRODUCT CONFIRMATION 5	-		
	2.2.	NAMEPLATE OF SERVO DRIVER 6	-		
	2.3.	INSTRUCTION OF SERVO DRIVER MODELS 6	-		
	2.4.	SPECIFICATION OF SERVO DRIVER7	-		
	2.5.	TECHNICAL CONDITIONS OF SERVO DRIVER	-		
	2.6.	DIMENSION OF SERVO DRIVER	-		
	2.7.	NAMEPLATE OF SERVO MOTOR 14	-		
	2.8.	INSTRUCTION OF SERVO MOTOR MODELS 15	-		
	2.9.	SPECIFICATIONS OF SERVO MOTOR 15	-		
	2.10.	INSTALLATION DIMENSION OF SERVO MOTOR17	-		
3.	MEC	HANICAL INSTALLATION 19	-		
	3.1.	INSTALLATION ENVIRONMENT 19	-		
	3.2.	INSTALLATION OF SERVO DRIVER 20	-		
	3.3.	MOUNTING & DISMOUNTING OF DRIVE JUNCTION BOX	-		
	3.4.	INSTALLATION OF SERVO MOTOR 23	-		
4.	ELEC	TRICAL CONNECTION 26	-		

	4.1.	WIRING CAUTIONS 20	6 -
	4.2.	SELECTION OF SWITCH, CONTACTOR AND WIRE DIAMETER 2	7 -
	4.3.	TERMINAL DISTRIBUTION	8 -
	4.4.	STANDARD WIRING	0 -
	4.5.	MAIN CIRCUIT WIRING	2 -
	4.6.	INPUT & OUTPUT SIGNAL WIRING 4	0 -
	4.7.	COMMUNICATION SIGNAL WIRING4	5 -
	4.8.	INTERFACE CIRCUIT 4	7 -
5.	DISP	LAY & FUNCTION 50	D -
	5.1.	EXTERNAL HMI DISPLAY AND FUNCTION	0 -
	5.2.	FUNCTIONS OF KEYS ON CONTROL PANEL	2 -
	5.3.	EXTERNAL HMI FUNCTIONS	3 -
	5.4.	LED DISPLAY AND OPERATION	7 -
	5.5.	LED PANEL FUNCTION 8	0 -
6.	OIL F	PUMP CONTROL 104	4 -
	6.1.	INTRODUCTION TO CONTROL MODE OF OIL PUMP	4 -
	6.2.	PRIOR CONTROL OF GENERAL PRESSURE (P CONTROL) 104	4 -
	6.3.	FLOW PRIOR CONTROL (Q CONTROL)100	6 -
	6.4.	DOUBLE-DISPLACEMENT PUMP CONTROL	8 -
7.	MUL	TI-PUMP PARALLEL CONTROL 112	2 -
	7.1.	MULTI-PUMP PATTERN 11	2 -
	7.2.	Compound Pattern 11	5 -
	7.3.	Multi-Mode Pattern 11	5 -
8.	RUN	COMMISSION 122	2 -

8.1.	COMMISSION FLOW CHART	122 -
8.2.	COMMISSION STEPS	122 -
9. ALA	ARMING & PROCESSING	158 -
9.1.	LIST OF PROTECTION DISPLAY	158 -
9.2.	ANALYSIS OF ERROR CAUSES	160 -
9.3.	PROTECTION CAUSES & MEASURES	162 -
9.4.	FLOW CHART OF TROUBLE SHOOTING	167 -
10. N	MAINTENANCE & INSPECTION	178 -
10.1.	ATTENTION ITEMS	178 -
10.2.	INSPECTION ITEMS	178 -
10.3.	TRAMEGGER TEST	179 -
10.4.	REPLACEMENT OF COMPONENTS & PARTS	179 -
11. A	ACCESSORY EQUIPMENTS	180 -
11.1.	MODEL LIST OF ACCESSORY EQUIPMENTS	180 -
11.2.	SELECTION OF NOISE FILTER	180 -
11.3.	SELECTION & INSTALLATION OF BRAKING RESISTOR	182 -
11.4.	SELECTION OF PRESSURE TRANSDUCER	186 -
11.5.	SELECTION OF EXTERNAL HMI	186 -
CONTA	CT US	187 -

1. Safety Cautions

Please read this manual closely and abide by all the safety cautions contained before moving, installing, operating and maintaining the equipments lest physical injury, equipment damage and even death.

KINWAY assumes no responsibility for any physical injury or equipment damage casused by your or your clients'nonobservance of these safety cautions.

1.1. Safety Concepts

The safety cautions can be classified into "Danger", "Warn" and "Attention".

Danger : Indicates latent dangers such as severe physical injury or equipment damage caused by your wrong operation against the requirements.

Alarm

: Indicates latent dangers such as moderate physical injury or equipment damage caused by your wrong operation against the requirements.

Attention

: Indicates latent dangers like moderate physical injury caused by your wrong operation against the requirements.

1.2. Safety Instruction

	1. Only trained eligible professionals can install and maintain			
	the products.			
	2. Forbidden to check wiring conditions or change components			
	when the equipment is powered on. Before wiring and			
	inspection, you must make sure all the input power have been			
	powered off and wait 10 minutes at least or until the D.C. bus			
Danger	voltage is below 36 V.			
	3. Do not check and maintain the machine without insulated			
	safety guard lest any electric shock or physical injury.			
	4. Connect the earth wire correctly in accordance with the			
	wiring arrangement by professionals lest any electric shock or			
	fire accident.			
	5. Do not have the motor, driver and braking resistor installed			
	near compustibles lest fire accidents			
	fied compusitores rest file accidents.			
	6. Never attempt to reconstruct the products without permission			
	6. Never attempt to reconstruct the products without permission lest any possible electric shock, malfunction, burn or fire			
	6. Never attempt to reconstruct the products without permission lest any possible electric shock, malfunction, burn or fire disaster.			
	 6. Never attempt to reconstruct the products without permission lest any possible electric shock, malfunction, burn or fire disaster. 1. No lifting of the connecting components of aviation plugs 			
	 6. Never attempt to reconstruct the products without permission lest any possible electric shock, malfunction, burn or fire disaster. 1. No lifting of the connecting components of aviation plugs when carrying the motor lest damages to them which may 			
	 6. Never attempt to reconstruct the products without permission lest any possible electric shock, malfunction, burn or fire disaster. 1. No lifting of the connecting components of aviation plugs when carrying the motor lest damages to them which may cause motor crash or injuries. 			
	 6. Never attempt to reconstruct the products without permission lest any possible electric shock, malfunction, burn or fire disaster. 1. No lifting of the connecting components of aviation plugs when carrying the motor lest damages to them which may cause motor crash or injuries. 2. No beating of the motor during installation lest any damage to 			
1 Alarm	 6. Never attempt to reconstruct the products without permission lest any possible electric shock, malfunction, burn or fire disaster. 1. No lifting of the connecting components of aviation plugs when carrying the motor lest damages to them which may cause motor crash or injuries. 2. No beating of the motor during installation lest any damage to the precise components on the spindle or any adverse effect 			
Alarm	 6. Never attempt to reconstruct the products without permission lest any possible electric shock, malfunction, burn or fire disaster. 1. No lifting of the connecting components of aviation plugs when carrying the motor lest damages to them which may cause motor crash or injuries. 2. No beating of the motor during installation lest any damage to the precise components on the spindle or any adverse effect on precision. 			
Alarm	 6. Never attempt to reconstruct the products without permission lest any possible electric shock, malfunction, burn or fire disaster. 1. No lifting of the connecting components of aviation plugs when carrying the motor lest damages to them which may cause motor crash or injuries. 2. No beating of the motor during installation lest any damage to the precise components on the spindle or any adverse effect on precision. 3. The surface temperature of the servo motor under continuous 			
Alarm	 6. Never attempt to reconstruct the products without permission lest any possible electric shock, malfunction, burn or fire disaster. 1. No lifting of the connecting components of aviation plugs when carrying the motor lest damages to them which may cause motor crash or injuries. 2. No beating of the motor during installation lest any damage to the precise components on the spindle or any adverse effect on precision. 3. The surface temperature of the servo motor under continuous full load operation may rise up to 100 degrees which is safe to 			

	out of the reach of human and animals lest empyrosis.				
	4. The external braking resistor may be highly heated when the				
	motor is under frequent braking operation, thus keep the				
	thermal passage well-ventilated. It is suggested to be installed				
	outside the control box (such as on the top ventilator outlet)				
	with adequate protection. If inside the control box is				
	necessary, it still shall be installed near the top ventilator				
	outlet and far away from other devices.				
	5. You must check all the external wirings carefully before the				
	first electrification lest unexpected accidents brought about by				
	wrong wiring.				
	6. Operate the motor in no-load condition as much as possible				
	when enabling for the first time and be ready to shut the				
	enable off depending on the operating condition.				
	7. Please start or stop the servo system through enabling				
	operation rather than by turn on/off the power.				
	8. The products contain electrolytic capacitor, integrated circuit,				
	epoxy boards and the like, thus should be disposed as				
	industrial wastes if necessary. Otherwise they may cause				
	personal injuries and environmental contamination.				
	1. Carry and install the driver carefully to be safe from physical				
	shock and vibration. Do not hold the front coverplate only				
	when carrying the driver, lest fall.				
Attention	2. Prevent screws, cables and other conductive materials from				
1 10001101011	falling into the driver.				
	3. L1, L2 and L3 are the input power end, while U, V and W are				
	the output motor end. Please connect the input power cables				

	and motor cables correctly, or else the driver might be	
	damaged.	
	4. You must close the front cover board or junction box before	
	running the driver lest the risk of electric shock.	
	5. Fasten the screws with proper torque during installation and	
	wiring.	
6. Forbidden to conduct any hi-pot test to the driver or		
	control loop of the driver with a tramegger.	

- % Please take into consideration the equipments' safety issue in working occasions where severe accidents or great loss may be caused by their incidental failure.
- * The manufacturer, the dealer and the service provider are not responsible for relational loss or joint liability, except of this servo system, brought about by the system fault.

2. Product Information

2.1. Product Confirmation

Please validate the products you received as the following items.

Confirm Items	Comment
Does the model of the	Please check the "model" bar on the inscriptions
products conform to	of servo motor and servo driver to confirm. (refer
the one you ordered?	to the instruction of 2.3 for detail)
Can the spindle of	It is normal if you can rotate it by hand.
servo motor rotate	
smoothly?	
Is there any damage?	Check through the outward appearance and see if
	there is any damage caused by transportation or
	other factors.
Are the accessories	Check if all the accessories, certificate of quality
and materials intact?	and warranty are contained as the packing list.

If there is anything wrong with the above items, please contact with the store where you bought the product or the sales department of KINWAY timely.

2.2. Nameplate of Servo Driver

2.3. Instruction of Servo Driver Models

Driver Model	7501	1502	1802	2502	3502	4502
КТ-СТ						
Applicable Motor	7.5	15	18	25	35	45
Capacity [kW]						
Rated Output	15	30	38	53	75	95
Current [Arms]						
Rated Input	17	33	39	59	83	105
Current [Arms]						
Max. Output	38	64	95	113	170	212
Current [Arms]						
Input Power	Three-pha	se AC 32	3~475V±0%	45~65Hz±	0%	
Weight	8.7kg	9kg	9.5kg	13kg	29kg	35.5kg
Regenerative	15Ω	15Ω	15Ω	10Ω	5Ω	5Ω
Braking Resistor	500W	500W	500W	1000W	4500W	4500W

2.4. Specification of Servo Driver

2.5. Technical Conditions of Servo Driver

	Control mode		Three-phase full-wave rectification, IGBT PWMV control sine-wave current drive mode	
	Max. output frequency		400 Hz	
Basic	Position sensor of motor		Resolver Resolution 4096/rev	
Specifications	Service conditions	Temperature for operation/storage	$-20 \sim +55$ °C (Derating use above 45 degrees) / $-20 \sim +83$ °C	

-			
		Humidity	Below 95%RH
		Trainfaity	(non-condensing)
			Indoor (no sunlight), no
		Air	corrosiveness, flammable gas,
			oil vapor and dust
		Sea level	Dalam 2000
		elevation	Below 2000m
	Protection level		IP20
	Cooling method		Forced air cooling
			10 points input: ①servo on
			(S-ON) @alarm reset (ALM-
			RST) 38 external input
		Input	interfaces (I1, I2, I3, I4, I5,
	Digital signal		I6, I7 and I8)
			Refer to 4.7 IO interface for
			detail functions.
		Output	4 points optocoupler output: ①
			alarm output (ALM) 2 servo
			driver ready (S-RDY) ③
			control output interface
			Refer to 4.7 IO interface for
			detail functions.
			1 point relay output:
			displacement switch control of
			the double displacement pump
			(01)
	Analog signal	Input	2 points input: 10 hits A/D
		- 8 -	
		-	

			(AIN1, AIN2, AIN3)
			2 points output; 10 bits D/A
			(ANOUT1, ANOUT2); You
		Output	can set the output of internal
			parameters through LED panel
			or external HMI
	Dowor	Quitaut	Provides reference power
	Power	Output	supply of 15V.
		CAN	By communicating with the
		communication	host machine, it can set
			parameters, control the driver,
	Communication		send commands and save
	function RS485		parameters and so on. (When
		RS485	RS485 is in service, the LED
			display panel and external HMI
			will be out of commission
		temporarily.)	
	LED display panel and key panel		5-bit LED display, 5 function
			keys
	External HMI Control mode		By communicating with the
			driver through Interface
			RS485, the external HMI can
			set parameters, control the
			driver, send commands and
-			save parameters and so on.
Control			
Function			The user can select one control

mode from 1 process control

		and $\textcircled{2}$ speed control by setting	
		parameters.	
		Hydraulic control command	
		input: analog input, CAN or	
	Control input	RS485 communication.	
		Speed command input: CAN or	
		RS485 communication.	
		Able to control 16 pumps in	
	Derallal control of multiple numpe	three ways (multi-pump	
	Paranel control of multiple pumps	control, compound control and	
		multi-mode control)	
	Precision of pressure control	±1bar (screw pump)	
Performance	Precision of flow control	±0.5%FS	
		≤100ms	
	Step response of pressure control	flow command >70%(screw	
		pump)	
		≤50ms	
	Speed step response in flow control	feedback pressure < 10 bar	
		Calibrate the pressure of output	
	Flow calibration function	flow according to the	
		characters of different pumps.	
	Speed command input	RS485,CAN communication	
	Precision of speed control	±0.5%	
	Torque response time	≤2ms	
	Overload capacity	2.5 times at most	

		Overcurrent, DC overvoltage,
		DC undervoltage, braking
		resistor damage, module
	Hardware error	overheat, pressure transducer
Protection		malfunction, forward and
Function		backward overspeed, braking
		overload and so on.
	Software error	Software malfunction and task
		replication, etc.
	Alarm records storage	It can store 5 alarm records.

When the servo driver is working in the environment over 45 degrees, please derate by 3% as the temperature rises one degree. In addition, avoid using the servo driver in the environment over 55 degrees. As for the servo driver installed in the control box, its temperature inside the box should be the ambient temperature.

2.6. Dimension of Servo Driver

(1) The dimension (mm) of KT-CT-7501-A-0, KT-CT-1502-A-0 and KT-CT-1801-A-* is as followed:

(2) The dimension (mm) of KT-CT-2502-A-1 is as followed:

(3) The dimension (mm) of KT-CT-3502-A-0 is as followed:

(4) The dimension (mm) of KT-CT-4502-A-1 is as followed:

2.7. Nameplate of Servo Motor

Type: K0	38F18C1	8P-33R1E-	Α	
U _N : 360	v	P _N :	7.5	kW
IN: 14	A	T _N :	38	N-m
K.: 2.8	N-m/A	nynwa:	1800/2500	npn
insulation	Class: F	Protecti	ve Class: IP:	54
S/N:		ERP:		

2.9. Specifications of Servo Motor

	K038F18	K058F18	K072F18	K091F15	K111F15	K132F18	K187F18
Medal	С	С	С	С	С	С	С
woder	18P-33R	18P-33R	18P-33R	18P-33R	18P-33R	18P-33R	25P-33R
	1E-A						
Rated Output	75	11	12	15	19	25	25
Power kw	1.5	11	15	15	18	25	35
Max. Output	10	20	22	20	50	62	01
Power kw	18	20	55	39	50	03	91
Counter EMF	190	192	190	200	227	108	167
Vrms/1000rpm	180	162	180	200	257	198	107
Rated Torque	20	50	72	01	111	122	187
Nm	20	30	12	91	111	155	107
Max. Torque	120	174	220	275	206	400	197
Nm	120	1/4	220	213	300	400	40/

Rated Current						10	- 1 (
A(Rms)	14	20	25	30	35.2	49	74.6
Max. Current	56	76	00	102	07	147	10/
A(Rms)	30	/6	88	102	97	147	194
Rated Speed	1800	1800	1800	1500	1500	1800	1800
Rpm	1600	1600	1600	1500	1500	1600	1000
Max. Speed	2500	2500	2500	2200	2200	2500	2500
Rpm	2300	2500	2500	2200	2200	2500	2300
Torque Value	28	29	28	3.2	3.86	3 17	2 58
Nm/Arms	2.0	2.7	2.0	5.2	5.00	J.17	2.50
Voltage Level	380						
V(Rms)	360	200					
Rated Time	Continuous						
Heatproof Level	F						
Dielectric and							
Voltage	AC1800V	1minute <1	ΩmA				
Withstand	AC1000,						
Strength							
Dielectric	DC1000V	DC1000V shove 50MO					
Resistor	Derootty						
Vibration Level	<15um						
Protection	Fully encl	osed and u	nventilated	IP54 (excl	uding the p	oart penetra	ted by the
Mode	spindle)						
Anti-vibration	It can with	hstand vibra	ation tests t	under the fi	rst and the	second env	ironmental
Behavior	levels spec	ified in Cha	.rt 6 under S	ection 4.26	of GB/T 734	45-94.	
Storage	-25 ~ +85 °C						

Temperature	
Ambient	20
Temperature	-20°~ +43 C
Ambient	200/ = $0.50/(non-condensing)$
Humidity	$20\% \sim 95\%$ (non-condensing)
Excitation	Downson and successful
Method	Permanent magnet
Installation	N/Df
Method	IMB3
Position	Developed reals
Detection	Resolver 1 pole

2.10. Installation Dimension of Servo Motor

(1) Dimension of K038F18C18P~K132F18C18P

Matan Madal	Length (mm)		
Motor Model	L1	L2	
K038F18C18P	412.5	330.5	

K058F18C18P	447.5	365.5
K072F18C18P	482.5	400.5
K091F15C18P	517.5	435.5
K111F15C18P	552.5	470.5
K132F18C18P	622.5	540.5

(2) Dimension of K187F18C25P/35kw

Madan Madal	Length (mm)		
Motor Model	L1	L2	
K187F18C25P	632	520	

3. Mechanical Installation

3.1. Installation Environment

For the sake of sound performance and long life-span, the MH500 servo driver should be installed under the following environmental conditions to be free from damage.

	1. Keep the driver from direct sunlight and operation outdoors
	as well.
	2. Avoid using the driver in the environment with corrosive gas
	or liquid.
	3. Ensure the operating environment clean of oil fog or
	splashing water.
	4. Do not use it in salt spray atmosphere.
	5. Do not use it in rainy or damp environment.
	6. A filter unit is necessary in the environment with drifting
	metal powder or silk fiber flocks.
Attention	7. Do not use it in the occasion with mechanical shock and
	vibration.
	8. If the ambient temperature rises up above 55 degrees, keep
	the driver from operating until the cooling measures take
	effect.
	9. Operate the driver in the range from -20° C to $+55^{\circ}$ C since
	either undercooling or overheating may cause equipment
	failures.
	10. Keep the operating driver away from power noises since
	high-power electric equipments like welding machines may
	impact its operation.

11. The radioactive material may influence the operation of the device.
 Keep the equipment far away from any flammables, diluents and dissolvent.

3.2. Installation of Servo Driver

- (1) Install the driver perpendicular to the wall as follows and reserve ample space (>200mm) above and below the driver for ventilating and wiring to facilitate heat dissipation and equipment operation.
- (2) Cool the servo driver by means of natural convection or the ventilator.
- (3) Fix the servo unit stoutly on the fitting surface by advantage of the four mounting holes.
- (4) If multiple drivers are needed to be installed in the cabinet:
 - (a) Please install the front side of the driver (the mounting surface of the LED panel) toward the operator.
 - (b) Install the ventilator inside the cabinet correctly to ensure effect cooling through the ventilator and natural convection; otherwise its improper installation may lead to the rise in ambient temperature outside the driver, influencing the cooling effect.
 - (c) Reserve the space of over 50mm in each lateral side and over 200mm in each vertical side in the matter of side-by-side installation. In addition, install a cooling fan above the servo unit. It is necessary to keep average temperature inside the control cabinet in case of local overheating of the ambient environment.

Placement chart of installing ventilator inside the control cabinet

3.3. Mounting & Dismounting of Drive Junction Box

Dismounting of the servo driver's junction box: (take KT-CT-1502-A-0 for instance)

1) Loosen and remove the two set screws holding the junction box.

2 Pull the junction box outward and take it out of the driver.

Mounting of the servo driver's junction box: (take KT-CT-1502-A-0 for instance)

- ① Place the junction box horizontally inside system flange slot and push it also horizontally until it gets in line with the shell gap.
- 2 Tighten the two set screws holding the junction box.

3.4. Installation of Servo Motor

Please install the motor as the following instructions to ensure safe and stable operation.

	1. Install the servo motor in horizontal or vertical direction.
	2. We suggest connecting the motor with the machine by means of the
	coupling and keeping both axle centers of the servo motor and the
Attention	machine in the same line. In the process of motor installation, the
Altention	insufficient concentricity may result in vibration and damage the
	bearing or encoder, etc.
	3. For the installation of feedback elements (photoelectric encoder and
	resolver), there are locating requirements that some fixed relative
	position should be reserved between the feedback elements and motor
	rotors as well as stators and the user are forbidden to disassemble or
	replace them without permission.
	4. Never inflict any tension to electric wires, especially the signal

wires which, owing to their fragile filling threads, cannot be pulled
too tightly during wiring (or application).
5. During installation, protect the bearings safe from direct shocks lest
any damage to their precision components (photoelectric encoder and
resolver) or adverse impact to the precision.

Install the motor and the pump as the following steps:

- (1) Couple the flat slot and the pump together, put on one half of the coupling and screw the bolts loosely.
- (2) Couple the flat slot and the motor together, put on one half of the coupling and screw the bolts loosely.
- (3) Couple the pump and the motor bracket, and then screw up the bolts after orientation.
- (4) Couple the motor and its bracket, and then screw up the bolts after orientation.
- (5) Adjust the clearance of elastic couplings, ranging from 2 to 3mm, screw up the bolts in both ends, and make sure you can rotate it smoothly without abnormal sounds.
- (6) Prepare the linking components of the motor, motor bracket and pump in the installation site, field match for the motor bracket and fix the screw holes.
- (7) Fix and screw up the bolts.

① O-shaped rubber seal
② coupling component
③ spring washer
④ flat washer
⑤ motor flat slot
⑥ pump flat slot
⑦ spring ring
⑧ flat washer
⑨ pressure transducer
⑩ knock-down thread relief valve
① oil discharge board of integrated block
② motor bracket
① hexagon socket head cap screw
④ hexagon socket head cap screw
④ hexagon socket head cap screw
④ hexagon bolt
④ cross-shaped round-head screw
⑦ oil pump
④ servo motor

4. Electrical Connection

4.1. Wiring Cautions

	1. Only professionals can conduct wiring operation in case of any				
A larm	improper wiring which may cause electric shock or fire disaster.				
	2. The MH500 series servo driver can be connected with the				
	industrial power cord without isolation through transformers,				
	which may cause unexpected accidents. In order to avoid servo				
· · · ·	systematic cross electric shocks, you must apply the wiring				
	breaker or fuse.				
	3. Since the MH500 series servo driver has no built-in ground fault				
	protection circuit, it is safer to configure a circuit breaker for				
	protection against overload and short-circuit or an earth leakage				
	circuit breaker assorted with wiring breaker.				
	1. We suggest three earthing methods: A, B and C (the value of				
	earthing resistor should be below 10 Ω). One-point earthing is				
	necessary. When the servo motor and other firmwares are				
	separately insulated, you may directly earth the motor.				
	2. The grounding wire should be as bold as possible (above 2.0				
Attention	mm ²).				
	3. At present, most of the earth leakage circuit breakers in the				
	market are electronic. Their anti-jamming capabilities are not in				
	common owing to the big difference in interior leakage current				
	detection and processing circuits. For users of this servo driver,				
	we suggest adopting the earth leakage circuit breaker with				
	powerful anti-jamming capability. For instance, the Zhengtai				
	earth leakage circuit breaker is a good choice in terms of its				

relatively better performance in this aspect.
4. In the process of wiring, please separate strong wires such as
power supply wires and input wires of servo motor from signal
wires and keep a certain distance over 30cm between them.
Never place them in the same pipe or bind them together.
5. Never share its power supply with the electric welding machine,
electric discharge machine and so on. If there is any
high-frequency generator around, even though it is not sharing
the same power supply with the equipments, please connect a
noise filter from the input side of the power line.
6. You must install a surge suppressor on the coils of electric relay,
solenoid and electromagnetic contactor.
7. Configure the input commander device and noise filter as near to
the servo unit as possible lest any malfunction led by noises.
8. Make sure the conducting wire diameter, switch capacity and
contactor capacity are proper. You may refer to the following
section "Selection of Switch, Contactor and Wire Diameter".

% Attention that wrong wiring may cause system faults or personal safety hazards.

4.2. Selection of Switch, Contactor and Wire Diameter

	Dynamic	Rated working	Major loop				Control loop
Driver model Dynamic feed-line circuit breaker		current of AC contactor	Suggested wire sectional area (mm ²)			Max. wire	Max. wire cross section 1.5 mm ²
	(A)	AC3 (400v) (A)	Input wire	U+ and PB wire	Output wire	sectional area (mm ²)	
KT CT 750	50	50	6	6	6	25	

1-A-0						
KT-CT-150	100	100	10	6	10	25
2-A-0						
KT-CT-180	125	125	10	6	10	25
2-A-*	125	123	10	0	10	25
KT-CT-250						
2-A-0	160	170	16	10	16	25
KT-CT-250	100	170	10	10	10	25
2-A-1						
KT-CT-35	250	250	16	16	16	25
02-A-0		250	10	16	10	33
KT-CT-45						
02-A-1	200	200	25	16	25	25
KT-CT-45	300	300	25	10	25	33
02-A-2						

* The suggested wire size can be applied to the major loop if the ambient temperature is below 40 degrees and the wiring distance shorter than 10m. You are advised to amplify the wire size if the ambient temperature and the wiring distance are beyond the above conditions. And the plastic insulated wire of 600VIV is a suggested choice.

- * The Max. wire cross section refers to the maximum sectional area confined by the size of wiring terminals.
- ** The braking resistors for KT-CT-7501-A-0, KT-CT-1502-A-0, KT-CT-1802-A-* have their own wires. You may extend the wires according to the above sizes if necessary.

4.3. Terminal Distribution

(Take Driver KT-CT-3502-A-0 for instance.)

Terminal Name	Function				
CN1	Connector of input/output signals				
CN2	Connector of resolver signals				
CN3	Connector of extended input/output signals				
CN4	LED panel and common connector for external HMI				
CN5	Main circuit terminal				
CN6	Connector of CAN communication signals				

4.4. Standard Wiring

Annotation 1: In this wiring diagram, only the digital input signal can access to the power supply of control system, while the terminals for 24V power supply on CN1 and CN3 should be
connected to an external power source which you may utilize the power supply, whose terminals are CRF and AGND, of the pressure transducer in the driver to substitute.

Annotation 2: The pressure transducer of this driver requires the power supply of 15V, accepts the pressure signal between 0 to 10V or 1 to 5V which you may set through the dial switch J9 on the control panel. Refer to the interfaces of analog input circuits in Section 4.8.1 for details.

Annotation 3: To prevent the influence on the driver from undesired signals, we suggest using shield cables, their screen grounded correctly, as analog signal driver lines and motor three-phase input lines,

Annotation 4: You must adopt twisted pair shield cables as the resolver wires and communication wires and guarantee their screen grounded correctly. Terminal resistors should be matched and added to the two ends of the communication wires. Since this driver has a built-in terminal resistor of 120 Ω for the CAN communication signal connector, you may decide whether to connect the communication wires to the bus in parallel through the jumper wire. In the operation of multi-pump parallel system, it is necessary to connect terminal resistors to the CAN communication wires by the two ends.

Annotation 5: To prevent the influence on the motor temperature samples from undesired signals, we suggest adopting the twisted pair cable. This driver supports temperature samples of two types of motor temperature sensors, KTY84 and Pt1000, which you can choose from through the jumper wire SW1 on the power panel. If the dial switch written with "KINWAY" is at ON while the one written with "OTHER" at OFF, it indicates that the driver supports Pt1000 temperature sensor. If the dial switch written with "KINWAY" is at OFF while the one written with "OTHER" at OFF supports KTY84 temperature sensor. It is not allowed that both the dial switches are at ON or OFF at the same time.

Annotation 6: Relying on the jumper wire J8 on the control panel, the terminal AGND can be connected to PE directly or through resistors and capacitors. If the middle one of short circuit J8 and the one at the side of GND are PIN, then the connecting method is suitable for the drivers of KT-CT-7501-A-0, KT-CT-1502-A-0 and KT-CT-1802-A-*. If the middle one of short circuit J8 and the one at the side of C are PIN, then the connecting method is suitable for the drivers of KT-CT-2501-A-1, KT-CT-3502-A-0 and KT-CT-4501-A-1.

4.5. Main Circuit Wiring

4.5.1. Names and Functions of Main Circuit Terminals (CN5)

Terminal diagram of driver models KT-CT-7501-A-0/KT-CT-1502-A-0/KT-CT-1802-A-*

Terminal diagram of the driver model KT-CT-2502-A-1

Terminal diagram of the driver model KT-CT-3502-A-0

Terminal diagram of the driver model KT-CT-4502-A-1

Terminal	Terminal		
Name	Symbol	Function	
Power input terminals of main circuit	L1, L2, L3	Three-phase AC380V ±15% (50/60Hz) Note that in the case of KT-CT-3502-A-0, the corresponding terminal symbols should be R, S and T.	
Connecting terminals of servo motor	U, V, W	Connecting to the servo motor.	
Earthing terminal		It can be connected to the power earthing terminal and the motor earthing terminal to facilitate ground processing.	
Connecting terminals of external braking resistor	U+, PB	The external braking resistor can be connected between U+ and PB. Note that in the case of KT-CT-3502-A-0, the external braking resistor should be connected between P1 and PB.	
Connecting terminal of motor temperature measuring resistor	T1, T2	They are used to connect the motor temperature measuring resistor.	

4.5.2. Names and Functions of the Signal Connector (CN2) for the Resolver

	6	•••• <u>9</u>	J
Signal Name	Code	Subscript	Function
Resolver Sino input+ Resolver Sino input-	Sin+ Sin-	CN2-3 CN2-7	The resolver feeds back signals sinusoidally.
Resolver cosine input+ Resolver cosine input -	Cos+ Cos-	CN2-1 CN2-6	The resolver feeds back signals cosinusoidally.
Reference signal+ Reference signal-	R1 R2	CN2-4 CN2-9	The resolver radiates signals.

4.5.3. Power Wires and Temperature Measuring Resistor Terminals for the Motor (KINWAY mM series motors)

No.	Name	Definition
1	U	
2	V	Motor three-phase input
3	W	
4	PT1	Temperature measuring
5	PT2	resistor
6	F1	Vantilator nouver 200V
7	F2	
8	F3	AC .
9	PE	Earthing

4.5.4. Resolver Terminals for the Motor (KINWAY mM series motors)

No.	Name	Definition
1	NC	Null
2	R1	Reference signal+
3	R2	Reference signal-
4	Sin+	Resolver sine output+
5	Sin-	Resolver sine output-
6	Cos+	Resolver cosine output +
7	Cos-	Resolver cosine output -
8~15	NC	Null

4.5.5. Motor Terminals (PHASE Motor)

Terminal	Definition	Terminal	Definition
U	Motor	1	R-Resolver reference input signal-
V	three-phase	2	R+Resolver reference input signal+
W	input	3	Sin-Resolver sine output signal-
GND	Motor earthing	4	Sin+Resolver sine output signal+
T1	Internal	5	Cos - Resolver cosine output signal-
Τ2	temperature measuring resistor of the motor	6	<i>Cos</i> + Resolver cosine output signal+
F1	Internal cooling	7~14	Null
F2	fan of the motor with AC power input of 220VAC	15	PTC+
17~18	Null	16	PTC-

4.5.6. Typical Wiring Instance of the Main Circuit

	1. One electric wire only for one interface of the connector.			
Attention	2. The three-phase wire of the motor should be shielded and be			
7 tuention	attached at one end to the earth wire of the driver and at the			
	other end to the earth wire of the motor connector.			
	3. All screws shall be fixed with proper tightness to ensure go			
	connection.			

- 4.5.7. Wiring Procedure of Main Circuit Terminals
- (1) Connect input power cables separately to the three power input terminals, L1, L2 and L3, of the driver, then link their earthing conductor with any earthing screw (PE) of the driver, fixing the screw with proper tightness to ensure good connection.
- (2) Connect motor three-phase input terminals, W, V and U, separately to connecting terminals, W, V and U, which links the driver and the servo motor, meanwhile make sure the screws are fixed with proper tightness for the sake of good connection. Attach earth wire terminals of the motor to any earthing screw (PE) of the driver. Connect terminals of motor temperature measuring resistor and driver terminals, T1 and T2, and also make sure the screws are fixed with proper tightness for the sake of good connection. Link connecting terminals of the motor resolver with the driver connector CN2 and tighten the screws.
- (3) Connect the two wiring terminals of the braking resistor to the driver terminals U+ and PB, having the screws fixed with proper tightness to ensure good connection.

4.6. Input & Output Signal Wiring

4.6.1. Function of Input & Output Signal Connector (CN1)

Signal Name	Code	Subscript	Function
Analog command	AIN1+	CN1-1	Flow command input:
1 input+	AIN1-	CN1-2	The input gain value can be adjusted
Analog command			through LED panel and HMI.
1 input-			
Analog command	AIN2+	CN1-3	Pressure command input:
2 input+	AIN2-	CN1-4	The input gain can be adjusted through
Analog command			LED panel and HMI.
2 input-			
Feedback input+	AIN3+	CN1-5	Pressure feedback input:
Feedback input-	AIN3-	CN1-6	The input gain can be adjusted through
			LED panel and HMI.
Analog output1	AOUT1	CN1-7	Monitor the output and command
Analog output2	AOUT2	CN1-8	internal parameter output through LED
			panel and HMI.
Power supply of	CRF	CN1-11	Voltage: +1 5 VDC, ± 5 % (full scale),
pressure transducer			25°C output<100mA
Angles success	ACNID	CN1-9	
Analog ground	AGND	CN1-10	

Fault reset signal	ALM-RS	CN1-12	Disable the servo alarm.
	Т		
Driver enabling	S-ON	CN1-13	Turn the motor to power-up state by
			lifting parts of grid blockades of the
			driver.
PLC digital input1	I1	CN1-14	I1: Select split-flow or merged-flow (use
PLC digital input2	I2	CN1-15	with the function of multi-pump
			distribution)
			High level for merged-flow and low
			level for split-flow.
			I2: Storing signal input (use with the
			function of electronic backpressure)
			High level in storing state of the injection
			molding machine and low level in other
			states.
Servo ready+	S-RDY+	CN1-20	Execute conduction if there is no servo
Servo ready-	S-RDY-	CN1-19	alarm when the main circuit is powered
			on and the enabling end of the driver
			turns to LOW.
Alarm output+	ALM+	CN1-22	Able to conduct the fault once sensing
Alarm output-	ALM-	CN1-21	abnormities. Photocoupler output.
			Max. voltage: DC30V, Max. current:
			DC50mA
PLC digital input2	COIN+	CN1-24	Output the signal logic of PLC digital
PLC digital input2	COIN-	CN1-23	input 2.
Control supply	+24V	CN1-16	The user prepares the power supply of
input for digital			+24V.

signals				Operational +25V	voltage	scope:	+8V	<
Digital	signal	CNID24M	CN1-17					
ground		GND24v	CN1-18					

4.6.2. Names and Functions of Input & Output Signal Connector (CN3)

The schematic diagram of CN3 double-row terminal location numbers:

Instruction of terminal definitions:

Signal Name	Code	Subscript]	Function		
Digital input3	I3	CN3-9	PID parame pressure con	eter selec	ction of sin tions (4 se	ngle-pur	nmp
Digital input4	I4	CN3-10	I4, low low high high	I3 low high low high	KP No. 0 1 2 3	KI No 0 1 2 3	0. KD No. 0 1 2 3

			PID param	eter sele	ction of m	ulti-pump	pressure	
			control sec	tions (4	sections),			
			I4,	13	KP No.	KI No.	KD No.	
			low	low	0	0	0	
			low	high	1	1	1	
			high	low	2	2	2	
			high	high	3	3	3	
			Selection o	f trigger	modes (us	e with PQ	control	
D: 141			and note t	hat the tr	iggerless i	mode is ef	ffective	
Digital	15	CN3-11	for the dri	ver)				
input 5			High level	for trigge	ering and l	ow level	for the	
			triggerless.					
			Injection in	put sign	al (use wit	h wobble	control of	
Digital	К	CN12 12	the double-	ole-displacement pump)				
input 6	16	CN3-12	High level	igh level in the injecting state and low level in				
			other states	l.				
			Packing in	put signa	l (use with	h wobble	control of	
Digital	15	CD 12 12	the double-	displace	ment pumj	p)		
input 7	17	CN3-13	High level	in the p	acking sta	te and lo	w level in	
			other states	l.				
D: (1			PQ selection	on signal	(use with	PQ contro	ol)	
Digital	18	CN3-5	High level	for Q con	ntrol and l	ow level f	For P	
input 8			control)					
			Wobble ou	ıtput sigi	nal (use w	vith wobb	le control	
Digital	O1+	CN3-1	of the doub	le-displa	cement pu	imp)		
output 1	01-	CN3-2	Conduct th	e small d	isplaceme	nt and cu	t off the	
			large displa	acement.				

			Contact capacity of relay output: 3A /250VAC 1A/30VDC
Digital output 2	O2+ O2-	CN3-3 CN3-4	Conduct when the oil pressure is up to the output value and the feedback pressure up to a certain percentage which you may set of the command value. Photocoupler output, max. voltage: DC30V, max. current: DC50mA
Control power input for digital signals	+24V	CN3-6 CN3-14 CN3-15	The user prepares the power supply of +24V. Operational voltage scope: +8V \sim +25V
Digital signal ground	GND 24V	CN3-7 CN3-8 CN3-16	

Servo Driver

4.7. Communication Signal Wiring

4.7.1. Names and Functions of Serial Communication Signal Connector (CN4)

Serial communication connector is communal for KINWAY LED panel and external HMI. It is linked to the LED panel by factory set. If you need the external HMI to commission the machine, you may pull out the wire linked to the LED panel and plug in another wire for connection with the external HMI.

Signal Name	Code	Subscript	Function	
DC495	RS485_A	CN4_2	Half-duplex, Max.	
Communication	RS485_B	CN4_7	communication speed	
communication			115200bits/s (Factory set 1920	
interface			bits/s)	
Communication	+5VA	CN4_4,8	Max. output current 200mA,	
power supply			precision $\pm 5\%$	
GND	GND_5VA	CN4_5,9		

4.7.2. Names and Functions Of CAN Communication Signal Connector (CN6)

Due to factory set, no CAN communication signal connector is attached to the KINWAY general driver. If you need one to control the driver or have to apply the driver in parallel system with multiple pumps, please purchase our other drivers with CAN communication signal connectors. But if you need this function for commission only, you may directly ask us for a dedicated cable of CAN communication.

The jumper wire J3 on CAN communication signal connector is used to decide whether to connect a terminal resistor of 120Ω in parallel to the bus. Plugging in the jumper cap means connection and removing it means disconnection.

Signal Name	Code	Subscript	Function	
CAN	CANH	CN6_1,3	Transform to standard signals of CAN	
communication	CANL	CN6_2,4	protocal through KINWAY's delicated	
interface			cable and attach to CAN-BUS.	

4.8. Interface Circuit

4.8.1. Analog Input Circuit Interface

The analog input circuits are as followed:

- (1) Instruction of 1-2 (flow command) and 3-4 (pressure command) terminals of connector CN1. The input impedance of voltage input method is about $20k\Omega$ and the max. allowable voltage is 15V.
- (2) Instruction of 5-6 (feedback input) of connector CN1.The analog signal means the feedback signal of oil pressure. You can select the pressure transducer with the output value of 0-10V or 1-5V through dial switch J9.

The input impedance is about 100 k Ω and the max. allowable voltage is 15V.

4.8.2. Digital Input Circuit Interface

Instruction of 12-15 terminals on connector CN1 and 5 and 9-13 terminals on connector CN3 is as followed:

Through jumper wires, you can choose high level effective circuit input (JP2, JP4 short circuit, JP1, JP3 disconnect) or low level effective circuit input (JP2, JP4 disconnect, JP1, JP3 short

circuit). According to the factory set, S-ON is designed with low level effective circuit and ALM-RST and I1-I8 with high level effective circuit. If you need the method of low level effective circuit, you may contact with the producer who should be responsible for modification of interface logic. The interface circuits are as followed:

4.8.3. Digital Output Circuit Interface

(1) Instruction of photocoupler output circuit:

Instruction of digital terminals 8-13 on connector CN1 and 3&4 on connector CN3:

Since the digital output signals (S_RDY, ALM, COIN, O2) are outputted by photocoupler collector, please use photocoupler circuits, relay circuits or bus receiver circuits. The following is the legend of interface circuits:

- Max. voltage: DC30V
- Max. current: DC50mA

Instruction of digital output terminals 1 and 2 on connector CN3: The digital output signal (01) is outputted by relay. The following is the legend of interface circuits:

(2) Analog output circuit:

Instruction of analog output terminals 7 and 8 on connector CN1: The analog output signals (AOUT1 and AOUT2) are outputted by operational amplifier and constitutes output loop together with AGND. You may select a proper internal parameter output through LED panel, HMI and SCM. According to factory set, AOUT1 is pressure output and AOUT2 is flow output of the motor. The following is the legend of interface circuits:

- Output precision: 10位D/A
- Voltage range: $0 \sim 10V$
- Max. current: DC10mA

5. Display & Function

5.1. External HMI Display and Function

5.1.1. Instruction of HMI Panel

The control panel is composed of LCD display area and a keypad. LCD is a screen of 5.7 inches with a resolution of 320×240 . And ten keys constitute the keypad which can be divided to areas of running keys, arrow keys and set keys as followed.

Menu Bar	Monitor	Set	Commission
Parameter Display Area			
System Status Bar	System Status: Revolving Speed:	Torque:	Resolver:

The display profile of LCD area is shown as followed:

Menu bar: It displays menu items under different conditions. The chosen item is shown with blue texts on white and the else with white texts on blue. The menu bar can display at most 3 items simultaneously. The user can shift among different items through right and left arrow keys to decide display of the follow-up or the former item.

Parameter display area: It displays names, values and units of parameters attached to the chosen menu.

System status bar: It shows the present status of the system as well as the values of torque, revolving speed and resolver. The units defined by default (torque: nm; revolving speed: rpm) are not shown.

The contents in the menu bar and parameter display area change with key operation of the user while the system running status decides what's displayed in the system status bar.

5.2. Functions of Keys on Control Panel

5.2.1. Functions of Running Keys

Auto 自动	Press this to switch the run enable between "enable" and "forbidden".
Manual 手动	Reserve
Forward 前进	Under the commission menu, press this if the "jog enable" is enabling and the motor will revolve to the forward direction at the jog speed you set.
Reverse 后週	Under the commission menu, press this if the "jog enable" is enabling and the motor will revolve to the reverse direction at the jog speed you set.

5.2.2. Functions of Arrow Keys

1. During menu switch, press this to select the desired menu by rolling
to the right.
2. During parameter set, press this to switch the highlight area "
among parameter digits and keys of "save"/"cancel" to the right.
1. During menu switch, press this to select the desired menu by rolling
to the left.
2. During parameter set, press this to switch the highlight area "
among parameter digits and keys of "save"/"cancel" to the left.
1. During parameter check, press this to select corresponding
parameters by scrolling up.
2. During parameter set, when one digit is chosen, press this to change
the digit by adding one and it can realize carry change.

5.2.3. Functions of Set Keys

Confirm क्षेत्र	 Press it to turn from parameter check to parameter set or to disable/enable. After selecting the virtual key of "save" / "cancel", press this to save/cancel parameter setting.
Cancel 取消	1. Press it to return to parameter check from parameter set.

5.3. External HMI Functions

After powering on the connecting driver, the screen of HMI will present the process of initialization. The user can not use keys to operate HMI until it accomplishes initialization.

According to the parameter list, the user can switch among five menu bars of "monitor", "set", "commission", "multi-pump" and "parameter download" through \blacksquare and \blacktriangleright . The chosen menu will

be highlighted by the cursor. Switch the highlight cursor to the desired parameter through \blacksquare and \blacktriangleright .

Monitor	Set	Commission	
Motor selection		U1004F.15.3	
Pump selection		SETTIMA 28mL/r	
Pressure feedback zero calibration			
Pressure calibration mode		Linear calibration	
Quantity calibration mode		Linear calibration	
Linear calibration	node	-	
System status:		Pressure:	
Revolving speed:	Forque:	Resolver:	

After the parameter is highlighted, press to enter the interface of parameter modification.

Move the highlight cursor through \blacktriangleleft and \blacktriangleright to the selected motor and choose the desired model through \blacktriangle and ∇ .

Setting Pa	arameters	
Motor selection	(Set)	
K036N20A11		
0 0 1		
SAVE CANCEL		
System status:	Pressure:	
Revolving speed: Torque:	Resolver:	

Switch the highlight cursor to "SAVE" through \blacksquare and \blacktriangleright .

then press (in) to save the parameter and exit to the set menu bar. The current parameter will be sent to the driver through HMI.

Some commission parameters are slightly different from setting parameters. For instance, the user can just press with to modify the parameter directly when the diagnose enable parameter is highlighted.

Menu No.	Menu Name	Description	Parameter Range	Unit	
Screen 1					
0	Flow command + Analog signal voltage	Command flow quantity Voltage value of flow command analog signal	[0,2400.0] [0,10.00]	L/min V	
1	Pressure command + Analog signal voltage	Command pressure value Voltage value of pressure command analog signal	[0,250.0] [0,10.00]	bar V	
2	System fault	Alarm of system fault (able to display multiple concurrent faults.)	Refer to "List of protection display"		
3	Motor current	Effective value of motor winding current	[0,900.0]	А	
4	AC voltage	AC input voltage	[0,500]	Vrms	
5	DC voltage	DC bus voltage	[0,800]	v	
Screen 2					

5.3.1. List of Monitor Menu

6	Torque limit	Output capability of system RT torque	[0,1800]	Nm
7	Motor temperature	Temperature of machine winding	[-52,244]	°C
8	Driver temperature	Temperature of IGBI module	[-46,244]	Ĉ
9	Ambient temperature	Ambient temperature of the driver	[-18,114]	°C
10	Machine material	Driver No. for modification	[1,999]	
11	Max. system pressure	Max.pressuretoexhausthydraulicoil.from the pump	[0,250.0]	bar
Screen	3			
12	System max. flow	Max. flow to exhaust hydraulic oil. from the pump	[0,2400.0]	L/min
13	Power	Mechanical power of motor output	[0,327.67]	Kw
14	Software version	Software version of the driver	Software version No. of the driver	
15	Interface version	Software version of HMI	Software version No. of HMI	

16 Runtime		[0,99]	year	
	Duntimo	Accumulative running	[0,364]	day
	Kuntime	time of the driver	[0,23]	h
			[0,59]	m

5.3.2. List of Set Menu

Menu No.	Menu Name	Description	Parameter Range	Unit
Screen 1				
1	Driver selection	Driver model	RefertoChapter5.5.4in the list ofdriver models	
2	Motor selection	Motor model	RefertoChapter5.5.4in the list ofmotor models	
3	Pump selection	Oil pump model	RefertoChapter5.5.4in the list of oilpump models	
4	Pressure feedback zero calibration	Able to eliminate the zero offset of pressure transducer through pressure feedback zero calibration	Calibration	
5	Pressure calibration	Calibration method of	Linear	

5. Display&Function

	mode	pressure command	pressure
		analog signal	calibration
			Fold line
			pressure
			calibration
		Coliberation mothod of	Linear flow
6	Plana a libertian era da	Calibration method of	calibration
6	Flow calibration mode	flow command analog	Fold line flow
		signal cal	calibration
Screen	2		·
		It is used to decide	Under the
		whether to conduct	linear
	Linear/fold line pressure calibration	linear/fold line pressure	calibration
		calibration. Keep the	mode:
		driver in disable state	zero
		during calibration.	full scale
		During linear	Under the fold
		calibration, modify the	line calibration
7		pressure command	mode:
		value of injection	fold line node
		molding machine's	0
		system driver to zero	fold line node
		and to the max.	1
		respectively for	fold line node
		calibrations of linear	2
		zero and linear range.	fold line node
		During fold line	3

		calibration, the pressure	fold line node
		command value of	4
		injection molding	fold line node
		machine's system driver	5
		should be equal to the	fold line node
		pressure value at the	6
		fold line node.	fold line node
			7
			fold line node
			8
			fold line node
			9
			fold line node
			10
			fold line node
			11
			fold line node
			12
		It is used to decide	Under the
	Linear/fold line flow calibration	whether to conduct	linear
		linear/fold line flow	calibration
8		calibration. Keep the	mode:
		driver in disable state	zero
		during calibration.	full scale
		During linear	Under the fold
		calibration, modify the	line calibration
		command flow quantity	mode:

		of injection molding	fold line node
		machine's system driver	0
		to zero and to the max.	fold line node
		respectively for	1
		calibrations of linear	fold line node
		zero and linear range.	2
		During fold line	fold line node
		calibration, the	3
		command flow quantity	fold line node
		of injection molding	4
		machine's system driver	fold line node
		should be equal to the	5
		flow quantity at the fold	fold line node
		line node.	6
			fold line node
			7
			fold line node
			8
			fold line node
			9
			fold line node
			10
			fold line node
			11
			fold line node
			12
9	Pressure filtering	Calculation counts of	[1,32]

		average filtering for		
		pressure command		
		samples		
			[1,system max.	
			pressure	
			(multiple	
10		Set the full scale of	pumps in	
10	Pressure full scale	pressure at the node.	parallel) or	bar
			max. pressure	
			of the machine	
			(single pump)]	
			[1, max.	
	Flow full scale	Set the full scale of flow at the node.	system flow	L/min
			(multiple	
			pumps in	
11			parallel) or	
			max. flow of	
			the machine	
			(single numn)]	
		Set may flow value at	(single pump)]	
12	Max. flow	the node	[0,2400.0]	L/min
~		the node.		
Screen	3			
13	Max. pressure	Set max. pressure value	[0,250]	bar
	^	at the node.		
		Calculation counts of		
14	Flow filtering	average filtering for	[1,32]	
		flow command		

		samples	
15	Speed proportional gain	Proportional parameter of speed PID control	[0,32767]
16	Speed integral gain	Integral parameter of speed PID control	[0,32767]
17	Pressure feedback gain	Magnification of pressure feedback signal	[0,32767]
18	Rising slope of pressure command	Rising step of pressure command per millisecond	[0,32767]
Screen	4		
19	Descending slope of pressure command	Descending step of pressure command per millisecond	[0,32767]
20	Pressure proportional gain 0	Segment 0 of proportional gain of pressure PID control	[0,32767]
21	Pressure integral gain 0	Segment 0 of integral gain of pressure PID control	[0,32767]
22	Pressure differential gain 0	Segment0ofdifferentialgainofpressure PID control	[0,32767]
23	Pressure proportional gain 1	The 1 st segment of proportional gain of pressure PID control	[0,32767]

		The 1 st segment of			
24	Pressure integral gain	integral gain of pressure	[0 32767]		
		DID control	[0,32707]		
		PID control			
Screen	5				
	Pressure differential	The 1 st segment of			
25	gain 1	differential gain of	[0,32767]		
	gam i	pressure PID control			
	Duranting	The 2 nd segment of			
26	Pressure proportional	proportional gain of	[0,32767]		
	gain 2	pressure PID control			
		The 2 nd segment of			
27	Pressure integral gain 2	integral gain of pressure	[0,32767]		
		PID control			
		The 2 nd segment of			
28	Pressure differential gain 2	differential gain of	[0 22767]		
20			[0,52707]		
		pressure PID control			
	Pressure proportional	The 3 rd segment of			
29	gain 3	proportional gain of	[0,32767]		
	-	pressure PID control			
	Pressure Integral gain	The 3 rd segment of			
30		integral gain of pressure	[0,32767]		
	5	PID control			
Screen	Screen 6				
		The 3 rd segment of			
31	Pressure differential	differential gain of	[0,32767]		
	gain of 3	pressure PID control			

32	Pump displacement (reset)	Displacement per rev of oil pump	[0,32767]	mL/rev
33	Pump leakage (reset)	Ratio of oil pump's leakage loss and outlet pressure	[0,100.00]	L/min/bar
34	Pump reversal speed limit	Max. reversal speed of oil pump	[0,-6000]	rpm
35	Max. revolving speed of motor	Max. revolving speed in the forward and reversal directions of motor	[0,6000]	rpm
36	DC voltage calibration	Calibrate the DC voltage of driver with actual DC bus voltage	[0,800]	v
Screen	7			
37	AC voltage calibration	Calibrate the AC voltage of driver with actual AC input voltage	[0,500]	V
38	Base flow enable	It is used to set the control mode, whether with base flow or not, of oil pressure.	No base flow With base flow	
39	Base flow pressure	The parameter is used to set target pressure value of base flow when the system is under the control mode with base flow.	[0,250.00]	bar

40	Base flow quantity	The parameter, base flow quantity, is used to set the flow quantity to make the system achieve the pressure value of base flow when the system is under the control mode with base flow.	[0,327.67]	L/min
41	Overshoot limit value	Once the difference between feedback pressure and command pressure of the oil pump exceeds this set value, the motor will speed down promptly to restrict pressure overshoot.	[5,50]	bar
42	Motor revolving direction	Set revolving direction of motor	Forward Reversal	
Screen	8			
43	Resolve direction	Set revolving direction of resolver	Forward Reversal	
44	Backpressure method	Select the control method of backpressure storing of injection	Manual Auto	

		molding machine		
45	Type of pressure transducer	Pressure transducer type	1-5v 200bar 0-10v 250bar	
46	Type of plunger pump	Select displacement type	Single displacement Double displacement	
47	Displacement ratio of plunger pump	The ratio of large and small displacement of double displacement pump.	[0,100.0]	%
48	Pressure threshold value of wobble switch	Feedback pressure threshold value for wobble to switch to small displacement	[0,250.0]	bar
Screen	9			
49	Displacement switch mode	0: overpressure 1: dwell overpressure		
50	Delay of displacement pressure judge	The wobble will start switching when its switch condition is satisfied by system and the duration exceeds the delay of displacement pressure judge.	[0,32767]	ms
51	Delay of displacement switch rise	The time taken since the beginning when the	[0,32767]	ms
		driver's wobble makes		
--------	------------------------------------	---------------------------	------------	-----
		the digital outlet switch		
		to off until the pump		
		displacement increases		
		to the high volume.		
		The time taken since the		
		beginning when the		
		driver's wobble makes		
52	Delay of displacement	the digital outlet switch	[0,32767]	ms
	switch descend	to on until the pump		
		displacement decreases		
		to the low volume.		
	Wobble switch speed upper limit	Speed threshold value		
53		for wobble to switch to	[0,6000]	rpm
		large displacement		
		Speed threshold value		
54	Wobble switch speed lower limit	for wobble to switch to	[0,6000]	rpm
		small displacement		
Screen	10			
		Small-signal restrain		
55	Zero dead zone of	from analog signals of	[0,100.00]	%
	flow command	flow command		
		Small-signal restrain		
56	Zero dead zone of	from analog signals of	[0,100.00]	%
	pressure command	pressure command	-	
	Zero dead zone of	Small-signal restrain		
57	pressure feedback	from analog input	[0,100.00]	%
		- *		

		signals of pressure feedback		
58	O2 Breakover pressure coefficient	When the ratio of feedback pressure and command pressure exceeds this coefficient, output 02 to turn to breakover.	[0,100.00]	%
59	Negative moment restrain	When the negative moment restrain is enabled, the threshold value of motor's negative moment is zero.	0: disable 1: enable	

5.3.3. List of Commission Menu

Menu No.	Menu Name	Description	Parameter Range	Unit
Screen	1			
0	Run enable	Turn on/off motor drive	Disable	
0		function	Enable	
1	Diagnosa anabla	Turn on/off diagnose	Disable	
1	Diagnose enable	function	Enable	
2	Driver test (only available when diagnose enable is on)	Refer to "Driver Test of Section 8.1.7"	Disable Enable	
3	Initial angle	Refer to "Measurement	Disable	

	measurement	of Motor Initial Angle	Enable
	(only available when	of Section 8.1.6"	
	diagnose enable is on)		
4	Jog enable (only available when diagnose enable is on)	Refer to "Low Speed Jog and Exhaust of Section 8.1.8"	Disable Enable
5	Control mode	Set control mode of driver	Speed mode Process mode
Screen	2		
6	Speed command (available in speed mode)		The command value of forward and reverse speed should not exceed the max. speed of motor
7	Process instruction mode	It is used to select input method of command.	Digital input Analog input CAN continue 485 continue
8	Flow command	The command flow quantity is effective when digital input is taken to input command.	[0, max. flow] L\min
9	Pressure command	The pressure command	[0, max. bar

		value is effective when	pressure]	
		digital input is taken to		
		input command.		
10	Max. jog speed	Max. speed of motor when pressing forward/backward key.	Theforwardandreversespeedshouldnot exceed themax.speed ofmotor.	rpm
11	Revolving offset value	Zero offset angle of resolver and motor	[0,4096]	
Screen	3			
			Pressure	
			command	
			Pressure	
			feedback	
			Flow command	
			Flow feedback	
			Speed	
12	DA1	analog outlet 1	command	
		analog outlet 1	Speed feedback	
			Torque	
			command	
			Torque	
			feedback	
			Resolve	
			feedback	

			D.C. voltage
			Phase current
			Error message
			state word 1
			Error message
			state word 2
			Communication
			command
		Digital input	
13	DA1 max.	corresponding to max.	[-32767,32767]
		output of analog outlet 1	
		Digital input	
14	DA1 min.	corresponding to min.	[-32767,32767]
		output of analog outlet 1	
			Pressure
			command
			Pressure
			feedback
			Flow command
		Set output variable of	Flow feedback
15 D	DA2	analog outlet 2	Speed
		analog outlet 2	command
			Speed feedback
			Torque
			command
			Torque
			feedback

			Resolve
			feedback
			D.C. voltage
			Phase current
			Error message
			state word 1
			Error message
			state word 2
			Communication
			command
		Digital input	
16	DA2 max.	corresponding to max.	[-32767,32767]
		output of analog outlet 2	
		Digital input	
17	DA2 min.	corresponding to min.	[-32767,32767]
		output of analog outlet 2	
Screen	4		
		The analog outlet will	
		output the variable	
18	DA output value	when communication	[-32767,32767]
		command is taken for	
		DA variable output.	

5.3.4. List of Multi-pump Menu

Menu No.	Menu Name	Description	Parameter Range	Unit
Screen	1			

0	Net enable/disable	Net enable control	Disable Enable	
1	Net open/close tube	It controls motor enable/disable of all nodes, only available in the multi-pump mode	Close tube Open tube	
2	Converging type	Select converging type	Single pump Compound Multi-pump Multi-mode	
3	Node No.	Itreferstohostmachine when the nodenumber is 0 .Itreferstoslavemachine when the nodenumber isbetween 1and 15.	[0,15]	
4	Slave node No.	The slave node number refers to the number of slave machines linked to the host machine when it is 0.	[0,15]	
5	Node type	Set the running method of driver at nodes	Single unit Control unit Follow unit	
Screen	2			
6	Flow enter threshold	Condition for next	[0,100.0]	%

		pump to participate in		
		operation together.		
		When system flow is		
		beyond the present		
		flow enter threshold of		
		pump, then put next		
		pump into work.		
		Condition for next		
		pump to participate in		
		operation together. It is		
7	Flow enter hysteresis	used to avoid start &	[0,100.0]	%
	upper limit	stop back and forth of		
		pump led by flow at the		
		critical point.		
		Condition for next		
		pump to participate in		
		operation together. It is		
8	Flow enter hysteresis	used to avoid start &	[0,100.0]	%
	lower limit	stop back and forth of	., 1	
		pump led by flow at the		
		critical point.		
		Segment 0 of		
9	Multi-pump pressure	proportional parameter		
	proportional gain 0	under multi-pump	[0,32767]	
	r r r · r · · · · · · ·	pressure PID control		
	Multi-nump pressure	Segment 0 of integral		
10	integral gain 0	parameter under	[0,32767]	
		r and		

		multi-pump pressure	
		PID control	
11	Multi-pump pressure differential gain 0	Segment0ofdifferentialparameterundermulti-pumppressure PID control	[0,32767]
Screen	3		
12	Multi-pump pressure proportional gain 1	The 1 st segment of proportional parameter under multi-pump pressure PID control	[0,32767]
13	Multi-pump pressure integral gain 1	The1stsegmentofintegralparameterundermulti-pumppressurePID control	[0,32767]
14	Multi-pump pressure differential gain 1	The 1stsegment ofdifferentialparameterundermulti-pumppressureFURCENTIAL	[0,32767]
15	Multi-pump pressure proportional gain 2	The 2 nd segment of proportional parameter under multi-pump pressure PID control	[0,32767]
16	Multi-pump pressure integral gain 2	The2 nd segmentofintegralparameterundermulti-pumppressurePID control	[0,32767]

17	Multi-pump pressure differential gain 2	The 2 nd segment of differential parameter under multi-pump pressure PID control	[0,32767]
Screen	4		
18	Multi-pump pressure proportional gain 3	The 3 rd segment of proportional parameter under multi-pump pressure PID control	[0,32767]
19	Multi-pump pressure integral gain 3	The 3 rd segment of integral parameter under multi-pump pressure PID control	[0,32767]
20	Multi-pump pressure differential gain 3	The 3 rd segment of differential parameter under multi-pump pressure PID control	[0,32767]

5.3.5. List of Parameter Download Menu

Menu No.	Menu Name	Description	
Screen 1			
0	Demonster demole d	Download the RAM parameter inside driver to	
0	Farameter download	EEPROM.	
1	Factory reset	Parameter used for factory reset	
2	Batch parameter read	Batch read the parameter in EEPROM of	
2		HMI.	

2	Batch parameter	Batch download the parameter to EEPROM of	
3	download	HMI	
4	Batch parameter delete	Delete the parameter saved in EEPROM of	
	Buten purumeter delete	HMI	
5	Error record check	Read error records	

If the power supply of the driver is cut off during "factory reset" and "parameter download" is not performed yet, then no factory set will be reserved even after the driver is restarted.

5.4. LED Display and Operation

5.4.1. Description of LED Panel

Slot	Description	Slot	Description	Slot	Description
MODE	Menu skip/cancel		Up		Left
SET	Set		Down		

LED display table:

R				E	8	8	Displayed Letter
	U	0	I	С	6	0	Corresponding Letter
		E.		B	8		Displayed Letter
	V	Р	J	d	7	1	Corresponding Letter
	E		E	8	8	8	Displayed Letter
	W	q	К	E	8	2	Corresponding Letter
				E	8		Displayed Letter
	X	R	L	F	9	3	Corresponding Letter
	Ξ	E.		5	8	8	Displayed Letter
	Y	S	М	G	A	4	Corresponding Letter
	E			B	8	9	Displayed Letter
	Z	Т	N	Н	b	5	Corresponding Letter

When power of servo driver is on, LED nixie tube will be lit up and the revolving speed (rpm) of motor, accurate to the unit value, will be displayed by default.

If any fault happens during powering on or operation, the red light on panel will flash and the LED panel will show the error code which consists of error identifier (Err in the first three places from left to right on nixie tube) and error code number (two digits in the last two places from left to right on nixie tube). After occurrence of an error, the error code will flash once per second.

If several faults happen simultaneously, then several error codes will be displayed repeatedly as well as recurrently.

If keyboard operation is necessary in the state of speed or error display, press \checkmark and \bigtriangledown simultaneously for one second and LED panel will show UNLOCK which indicates the system keyboard is unlocked. After that the user can operate the keyboard.

The user can access to the shortcut mode through the keyboard if the driver is working in normal or by pressing $\frac{1}{1000}$ if the driver is out of order.

In the process of keyboard operation, press \blacktriangle and \bigtriangledown simultaneously for one second at any time and LED panel will show LOCK which indicates the system keyboard is locked and LED panel display will exit to the state of speed or error display.

5.4.2. Description of Indicator Light Display

The indicator light area which consists of a red LED light and a green LED light shows the current running state of MH500 system through the on , off & flash states of the two LED lights.

No.	Green Light	Red Light	Control State
1	Off	Off	Turn off
2	On	Off	Ready
3	Off	On	Power on
4	On	On	Diagnose
5	Flash	Off	Normal
6	Off	Flash	Fault

5.5. LED Panel Function

5.5.1. Keyboard Operation Mode

This driver has five modes of keyboard operation among which the user can switch with when the keyboard is unlocked.

Shortcut mode: to display key parameters

Monitor mode: to display state parameters

Set mode: to set basic parameters

Commission mode: to commission motor and reserve parameters

Multi-pump mode: to set parameters of multiple pumps in parallel

Operational flowchart is as followed:

5.5.2. Shortcut Mode

In shortcut mode, it is achievable to observe significant parameters of the driver by pressing \triangle . In the state of LOCK, press on \triangle and ∇ simultaneously for one second to enter "shortcut mode" and LED will show values of the chosen parameter. Press \triangleleft and LED will show the identifier of the next parameter. Release \triangleleft and LED will show the corresponding parameter values.

※ In shortcut mode, if there's no key operation in ten minutes, it will switch automatically to speed and error display interface.

Identifier	Definition & Description	Parameter Range	Unit
SPD	Speed feedback	[-6000,6000]	rpm
CUR	Current feedback	[0,900.0]	А
RES	Resolve feedback	[0,4096]	
PRS	Pressure feedback	[-250,250]	bar
PIDS	PID segment No.	[0,3]	

Parameter	chart	in	shortcut mode:	

5.5.3. Monitor Mode

Press $\textcircled{\mbox{\scriptsize eff}}$ to enter "monitor mode" and LED panel will show "d—xx" of which xx stand for identifiers of various parameters. Press \bigstar or \bigtriangledown to select the desired parameter identifier. Press $\textcircled{\mbox{\scriptsize str}}$ after selection and LED panel will show corresponding parameter values. Press $\textcircled{\mbox{\scriptsize str}}$ again to exit.

※ In monitor mode, if there's no key operation in ten minutes, it will switch automatically to speed and error display interface.

Code	Name	Parameter Range	Unit
d00	Flow	[0,2400.0]	L/min
	command		
d01	Pressure	[0,250.0]	bar
	command		
d02	System fault	System fault alarm (able to display several	
		concurrent faults)	
d03	Motor current	[0,900.0]	А
d04	AC voltage	[0,500]	Vrms
d05	DC voltage	[0,800]	V
d06	Torque limit	[0,1800]	Nm
d07	Speed	[-6000,6000]	Rpm
	feedback		
d08	Resolve	[0,4095]	
	feedback		
d09	Pressure	[-250,250]	bar
	feedback		
d10	Torque	[-1800,1800]	Nm
	feedback		
d11	Run mode	3: speed mode	
		4: process mode	
d12	Motor	[-52,244]	°C
	temperature		

Definitions of monitor parameters of the driver in monitor mode:

d13	Driver	[-46,244]	°C
	temperature		
d14	Ambient	[-18,114]	°C
	temperature		
d15	Machine	[1,999]	
	material		
d16	DSP software		
	version		
d17	Panel software		
	version		
d18	Max. system	[0,250.0]	bar
	pressure		
d19	Max. system	[0,2400.0]	L/min
	flow		
d20	Power	[0.00,327.67]	Kw
d21	Converging	0: single-pump 1: compound	
	type	2: multi-pump 3: multi-mode	

* Refer to List of HMI Monitor Menu in Chapter 5.3.1 for parameter description.

5.5.4. Set Mode

Press to enter "set mode" and LED panel will show "F—xx" of which xx stand for different parameter identifiers. Press \checkmark / \checkmark to choose the desired parameter identifier. Press st after selection and LED panel will show corresponding parameter values. Press st to move the flashing position when modifying parameter values and press st/v to change the value of the flashing position. After modification, press st to reserve and the flash stops meanwhile. At the moment, press \square or \square/\square to remodify parameter values and meanwhile the position for modification will keep flashing. Press \square again to exit.

The selection of driver, motor, and pump differs from that of other parameters. The specific operation is as followed: Operational flowchart of parameter set:

Operational flowchart of driver set:

Operational flowchart of motor and pump set:

Select No.: arrangement SN of motors or pumps of various models

Model code: digital codes of motors or pumps of various models

X In set mode, if there's no key operation in ten minutes, it will switch automatically to speed and error display interface.

Driver model	Driver model code
KT-CT-1502-A-0	0
KT-CT-1802-A-*	1
KT-CT-7501-A-0	2
(reserve)	3
(reserve)	4
KT-CT-4502-A-1	5
KT-CT-3502-A-0	6
KT-CT-2502-A-0	7
KT-CT-4502-A-2	8
KT-CT-2502-A-1	9

2) List of motor models:

Motor		Motor		Winding
select	Motor model	model	Manufacturer	temperature
No.		code		resistor model
0	K038F18C18P	60	KINWAY	Pt1000
1	K036F20C18P	65	KINWAY	Pt1000
2	K058F18C18P	33	KINWAY	Pt1000
3	K060F18C18P	66	KINWAY	Pt1000
4	K072F18C18P	61	KINWAY	Pt1000
5	K091F15C18P	34	KINWAY	Pt1000
6	K111F15C18P	35	KINWAY	Pt1000
7	K132F18C18P	62	KINWAY	Pt1000
8	K187F18C25P	63	KINWAY	Pt1000
9	K053F20D18P	67	KINWAY	Pt1000
10	K070F20D18P	68	KINWAY	Pt1000
11	K087F20D18P	64	KINWAY	Pt1000
12	K105F20D18P	69	KINWAY	Pt1000
13	K189F15D25P	70	KINWAY	Pt1000
14	K172F18D25P	71	KINWAY	Pt1000
15	K260F20D25P	72	KINWAY	Pt1000
16	K052520510D	17	ANXIN	1/73/04
16	K053F20E18P	47	MOTOR	K1Y84
17	V070E20E18P	10	ANXIN	VTV94
1/	NU/UF2UE18P	48	MOTOR	NI I 84
18	0 K007F20F10D 40	40	ANXIN	KTV84
18	KU0/F2UE10P	49	MOTOR	K1 I 84
19	K105F20E18P	50	ANXIN	KTY84

			MOTOR	
•	K189F15E25P		ANXIN	
20		51	MOTOR	KTY84
21	W172E10E25D		ANXIN	1275204
21	K172F18E25P	52	MOTOR	KTY84
22	K260E20E25D	52	ANXIN	KTN94
22	K260F20E25P	55	MOTOR	K1 Y 84
22	111004E 15 2	12	PHASE	VTV94
23	01004F.13.5	12	MOTOR	K1 I 04
24	111004E 17 3	12	PHASE	VTV94
24	U1004F.17.3	13	MOTOR	K1 I 84
25	U1004F.20.3	14	PHASE	VTV94
25			MOTOR	K1104
26	U1005F.15.3	15	PHASE	VTV84
20			MOTOR	K1104
27	U1005F.17.3	16	PHASE	KTV84
27			MOTOR	K1104
28	U1005F.20.3	17	PHASE	КТУ84
20			MOTOR	K1 I 04
29	U1007E 15 3	18	PHASE	KTV84
25	010071.15.5	10	MOTOR	KI I 04
30	U1007F 17 3	9	PHASE	KTY84
50	0100/1.17.5	9	MOTOR	ICT I UT
31	U1007F 20 3	19	PHASE	KTY84
51	010071.20.5		MOTOR	K1 I 84
32	U1008F.15.3	20	PHASE	KTY84

			MOTOR	
22	U1000E 17.2	21	PHASE	1/73/04
33	U1008F.17.3	21	MOTOR	KTY84
24		22	PHASE	
34	U1008F.20.3		MOTOR	KTY84
25	110105152		PHASE	1/17.104
35	01010F.15.3	6	MOTOR	K1 Y 84
26	1110105 19 2	10	PHASE	KTV94
30	01010F.18.5	10	MOTOR	K1184
27	1110105 20 2	4	PHASE	1/17.04
37	U1010F.20.3	4	MOTOR	K1 Y 84
20	U1013F.15.3	23	PHASE	KTN94
38			MOTOR	K1 Y 84
20	U1013F.17.3	24	PHASE	KTV94
39			MOTOR	K1Y84
40	U1013F.18.3	25	PHASE	VTV94
40			MOTOR	K I Y 84
41	U1013F.20.3	8	PHASE	KTV84
41			MOTOR	К1 Ү 84
42	111220E 15 2	26	PHASE	VTV94
72	013201.13.5	20	MOTOR	К 1 Ү 84
12	111220E 17 2	11	PHASE	KTV84
45	015201.17.5	11	MOTOR	K1104
44	U1320F 18 3	27	PHASE	KTV84
44	U1520F.18.5		MOTOR	K1 I 84
45	U1320F.20.3	28	PHASE	KTY84

		MOTOR		
1112205 15 2	26	PHASE	1775204	
U1330F.15.3	36	MOTOR	KT Y 84	
11220F 10 2	27	PHASE	1/73/04	
U1330F.18.3	31	MOTOR	KT Y 84	
112205 20 2	29	PHASE	1775204	
U1330F.20.3	38	MOTOR	KTY84	
112405 15 2	41	PHASE	1775204	
U1340F.15.3	41	MOTOR	KT Y 84	
1112405 10 2	12	PHASE	¥77¥04	
U1340F.18.3	42	MOTOR	КТҮ84	
U1340F.20.3	43	PHASE	¥77¥04	
		MOTOR	KTY84	
GK6133-161	44	DENGQI	KTY84	
GK6135-161	45	DENGQI	KTY84	
GK6137-B61	40	DENGQI	KTY84	
GK6137-161	46	DENGQI	KTY84	
GK6139-B61	39	DENGQI	KTY84	
K058N18B11	30	SULIDE	Pt1000	
K038N18B11	31	SULIDE	Pt1000	
K072N18B11	32	SULIDE	Pt1000	
K042N25A11	0	SUQIANG	Pt1000	
K036N20A11	3	SUQIANG	Pt1000	
K053N20A11	5	SUQIANG	Pt1000	
K062N20A11	1	SUQIANG	Pt1000	
K072N20A11	29	SUQIANG	Pt1000	
	U1330F.15.3 U1330F.18.3 U1330F.20.3 U1340F.15.3 U1340F.15.3 U1340F.18.3 U1340F.20.3 GK6133-161 GK6135-161 GK6137-B61 GK6137-B61 GK6137-B61 GK6139-B61 K058N18B11 K038N18B11 K072N18B11 K072N18B11 K036N20A11 K036N20A11 K062N20A11 K062N20A11	U1330F.15.3 36 U1330F.18.3 37 U1330F.20.3 38 U1330F.20.3 38 U1340F.15.3 41 U1340F.15.3 41 U1340F.18.3 42 U1340F.20.3 43 GK6133-161 44 GK6135-161 45 GK6137-161 46 GK6137-161 46 GK6139-B61 39 K058N18B11 30 K038N18B11 31 K072N18B11 32 K042N25A11 0 K036N20A11 5 K062N20A11 1 K072N20A11 29	MOTORU1330F.15.336PHASE MOTORU1330F.15.337PHASE MOTORU1330F.18.337PHASE MOTORU1330F.20.338PHASE MOTORU1340F.15.341PHASE MOTORU1340F.15.341PHASE MOTORU1340F.18.342PHASE MOTORU1340F.18.342PHASE MOTORU1340F.20.343PHASE MOTORGK6133-16144DENGQIGK6135-16145DENGQIGK6137-B6140DENGQIGK6137-B6140DENGQIGK6137-B6139DENGQIGK6139-B6139DENGQIGK038N18B1131SULIDEK072N18B1132SULIDEK042N25A110SUQIANGK036N20A115SUQIANGK062N20A111SUQIANGK072N20A1129SUQIANG	

3) List of oil pump models

Pump		Pump	
Select	Pump Model	Model	Manufacturer
No.		Code	
0	CHENGJIE 032cc/rev	52	CHENGJIE
1	CHENGJIE 040cc/rev	17	CHENGJIE
2	CHENGJIE 050cc/rev	18	CHENGJIE
3	CHENGJIE 080cc/rev	08	CHENGJIE
4	CHENGJIE 100cc/rev	09	CHENGJIE
5	CHENGJIE 125cc/rev	10	CHENGJIE
6	SUMITOMO 032cc/rev	00	SUMITOMO
7	SUMITOMO 050cc/rev	02	SUMITOMO
8	VOITH 025cc/rev	43	VOITH
9	VOITH 032cc/rev	36	VOITH
10	VOITH 040cc/rev	37	VOITH
11	VOITH 050cc/rev	38	VOITH
12	VOITH 064cc/rev	39	VOITH
13	VOITH 080cc/rev	40	VOITH
14	VOITH 100cc/rev	41	VOITH
15	VOITH 125cc/rev	42	VOITH
16	ECKERLE 025cc/rev	44	ECKERLE
17	ECKERLE 032cc/rev	45	ECKERLE
18	ECKERLE 040cc/rev	46	ECKERLE
19	ECKERLE 050cc/rev	47	ECKERLE
20	ECKERLE 064cc/rev	48	ECKERLE
21	ECKERLE 080cc/rev	49	ECKERLE

22	ECKERLE 100cc/rev	50	ECKERLE
23	ECKERLE 125cc/rev	51	ECKERLE
24	SETTIMA 028cc/rev	19	SETTIMA
25	SETTIMA 032cc/rev	03	SETTIMA
26	SETTIMA 036cc/rev	04	SETTIMA
27	SETTIMA 040cc/rev	05	SETTIMA
28	SETTIMA 045cc/rev	06	SETTIMA
29	SETTIMA 050cc/rev	07	SETTIMA
30	SETTIMA 063cc/rev	11	SETTIMA
31	SETTIMA 075cc/rev	12	SETTIMA
32	SETTIMA 090cc/rev	13	SETTIMA
33	SETTIMA 101cc/rev	16	SETTIMA
34	SETTIMA 125cc/rev	14	SETTIMA
35	SETTIMA 150cc/rev	15	SETTIMA
36	SUNNY 018cc/rev	20	SUNNY
37	SUNNY 028cc/rev	21	SUNNY
38	SUNNY 031cc/rev	22	SUNNY
39	SUNNY 037cc/rev	23	SUNNY
40	SUNNY 040cc/rev	24	SUNNY
41	SUNNY 045cc/rev	25	SUNNY
42	SUNNY 056cc/rev	26	SUNNY
43	SUNNY 062cc/rev	27	SUNNY
44	SUNNY 071cc/rev	28	SUNNY
45	SUNNY 078cc/rev	29	SUNNY
46	SUNNY 090cc/rev	30	SUNNY
47	SUNNY 101cc/rev	31	SUNNY

48	SUNNY	120cc/rev	32	SUNNY
49	SUNNY	130cc/rev	33	SUNNY
50	SUNNY	140cc/rev	34	SUNNY
51	EATON	160cc/rev	35	EATON

Definitions of parameter table in set mode:

Code	Definition & Description	Parameter Range	Unit
E00	Driver coloction	Refer to the above list of driver	
FUU	Driver selection	models for details	
E01	Motor selection	Refer to the above list of motor	
1.01	Wotor selection	models for details	
F02	Pump selection	Refer to above list of oil pump	
1.02	r unp selection	models for details	
E03	Pressure feedback zero	0: no calibration	
1.03	calibration	1: calibration	
504	Pressure calibration mode	0: linear pressure calibration	
1.04		1: fold line pressure calibration	
F05	Flow calibration mode	0: linear flow calibration	
1.02		1: fold line flow calibration	
		0: no action	
		1: linear zero	
		2: linear range	
F06	Pressure calibration	3: fold line node 0	
F00	r ressure canoration	4: fold line node 1	
		5: fold line node 2	
		6: fold line node 3	
		7: fold line node 4	

			-	
		8: fold line node 5		
		9: fold line node 6		
		10: fold line node 7		
		11: fold line node 8		
		12: fold line node 9		
		13: fold line node 10		
		14: fold line node 11		
		15: fold line node 12		
		0: no action		
		1: linear zero		
	Flow calibration	2: linear range		
		3: fold line node 0		
		4: fold line node 1		
		5: fold line node 2		
		6: fold line node 3		
507		7: fold line node 4		
F07		8: fold line node 5		
		9: fold line node 6		
		10: fold line node 7		
		11: fold line node 8		
		12: fold line node 9		
		13: fold line node 10		
		14: fold line node 11		
		15: fold line node 12		
			Sampling	
F08	Pressure filtering	[1,32]	time	of
			moving	

			average
			(1ms)
			Sampling
			time of
F09	Flow filtering	[1,32]	moving
			average
			(1ms)
		[1, system max. pressure	
F10	Pressure full scale	(multi-pump in parallel) or local	bar
		max. pressure (single pump)]	
		[1, system max. flow	
F11	Flow full scale	(multi-pump in parallel) or local	L/min
		max. flow (single pump)]	
F12	Max. pressure	[0,250]	bar
F13	Max. flow	[0,2400]	L/min
F14	Speed proportional gain	[0,32767]	
F15	Speed integral gain	[0,32767]	
F16	Pressure feedback gain	[0,32767]	
F17	Rising slope of pressure command	[0,32767]	
F18	Descending slope of	[0 32767]	
	pressure command	L	
F19	Pressure proportional gain	[0 32767]	
117	0	[0,52707]	
F20	Pressure integral gain 0	[0,32767]	
F21	Pressure differential gain 0	[0,32767]	

F22	Pressure proportional gain	[0,32767]	
F23	Pressure integral gain 1	[0,32767]	
F24	Pressure differential gain 1	[0,32767]	
F25	Pressure proportional gain 2	[0,32767]	
F26	Pressure integral gain 2	[0,32767]	
F27	Pressure differential gain 2	[0,32767]	
F28	Pressure proportional gain 3	[0,32767]	
F29	Pressure integral gain 3	[0,32767]	
F30	Pressure differential gain 3	[0,32767]	
F31	Pump displacement	[0,32767]	mL/r
F32	Pump leakage	[0,100.00]	L/min/bar
F33	Max. reverse speed of pump	[0,-6000]	Rpm
F34	Max. revolving speed of motor	[0,6000]	Rpm
F35	D.C. voltage calibration	[0,800] (only fine tuning)	V
F36	A.C. voltage calibration	[0,500] (only fine tuning)	V
F37	Base flow enable	0: no base flow 1: base flow	
F38	Base flow pressure	[0,250.00]	bar
F39	Base flow quantity	[0,327.67]	L/Min
F40	Overshoot limit	[5,50]	bar
F41	Revolving direction of	0: forward	

	motor	1: reversal	
E42	Deschus dimention	0: forward	
F42	Resolve direction	1: reversal	
E42		0: manual	
F45	Backpressure method	1: auto	
E44	Pressure transducer	0: 5V	
Г44	selection	2: 10V	
E45	Plug nump selection	0: single displacement	
F43	Flug pump selection	1: double displacement	
E46	Plug pump displacement	[0,100,0]	0/
F40	ratio	[0,100.0]	%0
E47	Threshold of wobble	[0 250 0]	bar
Г4/	pressure switch	[0,230.0]	Uai
E49	Delay of wobble pressure	[0 32767]	me
140	switch	[0,52707]	1113
		0: pressure command	
		1: pressure feedback	
		2: flow command	
		3: flow feedback	
		4: speed command	
F49	DA1	5: speed feedback	
112	Diff	6: torque command	
		7: torque feedback	
		8: resolve feedback	
		9: D.C. voltage	
		10: phase current	
		11: Error message state word 1	

		12: Error message state word 2	
		13: communication command	
F50	DA1 max.	[-32767,32767]	
F51	DA1 min.	[-32767,32767]	
F52	DA2	 0: pressure command 1: pressure feedback 2: flow command 3: flow feedback 4: speed command 5: speed feedback 6: torque command 7: torque feedback 8: resolve feedback 9: D.C. voltage 10: phase current 11: Error message state word 1 12: Error message state word 2 13: communication command 	
F53	DA2 max.	[-32767,32767]	
F54	DA2 min.	[-32767,32767]	
F55	DA output value	[-32767,32767]	
F56	Rising delay of wobble switch	[0, 32767]	ms
F57	Descending delay of wobble switch	[0, 32767]	ms
F58	Speed switch upper limit	[0 , 6000]	rpm

F59	Speed switch lower limit	[0,6000]	rpm
F60	Flow command zero dead zone	[0.00 , 100.00]	%
F61	Pressure command zero dead zone	[0.00 , 100.00]	%
F62	Pressure feedback zero dead zone	[0.00, 100.00]	%
F63	OUT2 breakover pressure coefficient	[0.00, 100.00]	%
F64	Negative moment inhibit	0: disable 1: enable	
F65	Displacement switch mode	0 : overpressure 1 : dwell overpressure	
F66	Factory reset	1: recover	
F67	Fault records check (display fault codes)	 fault 1 fault 2 fault 3 fault 4 fault 5 	
F68	Parameter download	1: download	

Refer to the List of Set Menu in Chapter 5.3.2 and List of HMI Parameter Download Menu in Chapter 5.3.5.

5.5.5. Commission mode

Press weil to enter "commission mode", LED panel will display "h—xx" of which xx stand for different parameter identifiers. Press k/k to choose the desired parameter identifier. Press st after selection and LED panel will show corresponding parameter values.

Press \checkmark to move the flashing position when modifying parameter values and change the value of the flashing position through $\checkmark/\bigtriangledown$. After modification, press set to reserve and the flash stops meanwhile. At the moment, press set or $\checkmark/\bigtriangledown$ to remodify parameter values and meanwhile the position for modification will keep flashing. Press set

※ In commission mode, if there's no key operation in ten minutes, it will switch automatically to speed and error display interface.

Code	Definition & Description	Parameter Range	Unit
H00	Run enable	0: disable	
		1: enable	
	Diagnose enable	0: disable	
101		1: enable	
		0: no action	
	Diagnose content	1: measure initial angle	
H02	(only available when	2: jog enable	
	diagnose enable is on)	3~5: invalid	
		6: driver test	
Ц02	Jog (only available when	A : forward	
H03	diagnose enable is on)	V : reverse	
H04	Control mode	3: speed mode	
		4: process mode	
	Speed command		
H05	(only available in speed	related to motor model	r/m
	mode)		
H06	Process instruction mode	0: digital input	

Definitions of parameter table in set mode:

		1: analog input	
		2: CAN continue	
		3: 485 continue	
H07	Flow command (process mode is digital input)	[0, max. flow]	l/m
H08	Pressure command (process mode is digital input)	[0, max. pressure]	kg
H09	Max. jog speed	The max. motor speed when $pressing \bigcirc Or \bigcirc$.	Rpm
H10	Revolve offset value	[0,4096]	

* Refer to List of HMI Commission Menu in Chapter 5.3.3.

5.5.6. Multi-pump mode

Press to enter "multi-pump mode", LED panel will display "p--xx" of which xx stand for different parameter identifiers. Press \checkmark/\checkmark to choose the desired parameter identifier. Press \fbox after selection and LED panel will show corresponding parameter values. Press \checkmark to move the flashing position when modifying parameter values and press \checkmark/\checkmark to change the value of the flashing position. After modification, press \fbox to reserve and the flash stops meanwhile. At the moment, press \fbox or \bigstar/\checkmark to remodify parameter values and meanwhile the position for modification will keep flashing. Press \Huge

Code	Definition & Description	Parameter Range	Unit
P00	Net enable	0:disable	

		1:enable	
P01	Net open tube	0: close tube	
		1: open tube	
	Converging type	0: single pump	
DOO		1: compound	
102		2: multi-pump	
		3: multi-mode	
P03	Node No.	[0,15]	
P04	Slave node number	[0,15]	
	Node type	0: single unit	
P05		1: control unit	
		2: follow unit	
P06	Flow enter threshold	[0,100.0]	%
P07	Flow enter hysteresis upper limit	[0,100.0]	%
P08	Flow enter hysteresis lower limit	[0,100.0]	%
P09	Multi-pump pressure proportional gain 0	[0,32767]	
P10	Multi-pump pressure integral gain 0	[0,32767]	
P11	Multi-pump pressure	[0,32767]	
	differential gain 0		
P12	Multi-pump pressure	[0,32767]	
	proportional gain 1		
P13	Multi-pump pressure	[0,32767]	
	integral gain1		
-------------	---------------------	-----------	--
P14	Multi-pump pressure	[0,32767]	
	differential gain 1		
P15	Multi-pump pressure	[0 32767]	
115	proportional gain 2	[0,52707]	
D16	Multi-pump pressure	[0 22767]	
110	integral gain 2	[0,52707]	
D17	Multi-pump pressure	[0 22767]	
F17	differential gain 2	[0,52707]	
D10	Multi-pump pressure	[0 22767]	
PIð	proportional gain 3	[0,52767]	
D10	Multi-pump pressure	[0 22767]	
P19	integral gain3	[0,52707]	
D 20	Multi-pump pressure	[0 22767]	
120	differential gain 3	[0,32707]	

* Refer to the List of HMI Multi-pump Menu in Chapter 5.3.4 for parameter description.

6. Oil Pump Control

6.1. Introduction to Control Mode of Oil Pump

Through the oil pump control mode of the servo driver, it is achievable to control the output pressure and flow by adjusting the revolving speed of A.C. servo motor in accordance with the input pressure command and flow command of external control system and feedback signals from the pressure transducer. The pressure control refers to closed loop PID control through signals of the pressure transducer on the oil outlet. The flow control refers to adjusting the output flow of the pump by adjusting its revolving speed through A.C. servo motor.

Basic functional block diagram of oil pump control:

6.2. Prior Control of General Pressure (P control) The flow control is conducted when feedback pressure is less

than command value. It is required that the output flow of the pump can always follow the change of flow command quickly and accurately. Since the output flow of the pump is proportional to the revolving speed of the motor, it turns out that the flow command decides the revolving speed command of the motor. In pressure control mode, it is required that the system pressure feedback can always follow the change of pressure command quickly and accurately. Since the change in revolving speed of the motor leads to the change in pressure feedback, it turns out that the pressure PID regulator decides speed command of the motor.

In practical hydraulic system, it is necessary to switch between the two control modes frequently and rapidly with small pressure overshoot and vibration. The user may ameliorate the performance of flow control, pressure control and control switch by adjusting speed proportional gain, speed integral gain, pressure proportional gain, pressure integral gain and pressure differential gain.

LED Display Code	Parameter Name	Function Description	Initial Value
F14	Speed proportional gain	Increasing speed proportional gain can enhance transient response of motor speed control, boost stability of motor speed and suppress disturbance. Too much gain may cause severe vibration.	When selecting different pumps
F15	Speed integral gain	Increasing speed integral gain can minish speed governing deviation and suppress overshoot. Too much gain may	

Commission parameter chart of pressure prior control:

		cause severe vibration.	
F19, F22 F25, F28	Pressure proportional gain	Increasing pressure proportional gain can enhance transient response and	13000
P09, P12 P15, P18	Multi-pump pressure proportional gain 0-3	disturbance and minish pressure overshoot. Too much gain may cause severe vibration.	8000
F20, F23 F26, F29	Pressure integral gain 0-3	Increasing pressure integral gain can enhance transient response of pressure	100
P10, P13 P16, P19	Multi-pump pressure integral gain 0-3	control minish pressure control deviation and add pressure overshoot. Too much gain may cause severe vibration.	100
F21, F24 F27, F30	Pressure differential gain 0-3	The higher the pressure differential gain, the less overshoot when switching	0
P11, P14 P17, P20	Multi-pump pressure differential gain 0-3	to pressure control. Too much gain may destroy the function of pressure control deviation and cause severe vibration.	0

6.3. Flow Prior Control (Q control)

In pressure prior control mode, the extremely low pressure command influences the rising speed of flow command. Meanwhile, in flow control mode, if pressure feedback rises quickly to around command pressure, flow command may also get influenced. The flow prior control mode can be applied to a few conditions when flow control is demanded and flow command is free from influence of pressure command and pressure feedback. In flow control mode, take flow command as the command of system flow. Through parameter modification, the user can adjust the conditions of switching from flow control to pressure control. Use the pressure trigger control to minish pressure overshoot during mode switch.

* The factory set for the driver is pressure prior control mode by default. Flow prior control can only be commissioned by the PC software SCM of KINWAY.

Parameter Name	Function Description	Initial Value	Unit
Control mode	P mode refers to pressure control prior mode and Q mode refers to flow control prior mode.	P control	
Trigger integral value	The setting revolving speeds of the motor in pressure trigger control when switching from flow control to pressure control.	200	Rpm
Trigger way	Decide whether to apply pressure trigger control when switching from flow control to pressure control.	None trigger	
Pressure differential trigger threshold	The pressure rise speed condition of entering pressure trigger mode.	10	bar∖ms
Enter trigger coefficient l	The upper limit of the ratio between feedback pressure and command pressure to enter pressure trigger	90	%

Commission parameter chart of flow prior control:

	mode.		
Enter trigger coefficient 2	The lower limit of D-value between command pressure and feedback pressure when entering pressure trigger mode.	10	bar
Exit trigger coefficient 1	The lower limit of ratio between feedback pressure and command pressure when exiting from pressure trigger mode.	80	%
Exit trigger coefficient 2	The upper limit of D-value between command pressure and feedback pressure when exiting from pressure trigger mode.	15	bar

6.4. Double-displacement Pump Control

The user can switch between big and small swash plate dips to change the displacement by powering on/off the swash plate switch coil. The big swash plate dip is used for the system demanding output of large flow quantities while the small one is used for the system in dwell or demanding high pressure and small flow quantities so as to enhance the performance of pressure control and minish energy consumption. This driver has two control modes for the swash plate switch of the double-displacement pump: overpressure switch and dwell overpressure switch.

Overpressure switch mode: Switch to small swash plate dip when system feedback pressure exceeds pressure threshold of displacement switch and motor speed is less than lower speed limit of displacement switch. Switch to big swash plate dip when motor speed exceeds upper speed limit of displacement switch.

Dwell overpressure switch mode: Connect the injection input signal of the upper control system to the digital input signal I6 (CN3-12) of the driver. The high input indicates that the injection molding machine is under injection dwell state. At this moment, if feedback pressure reaches pressure command value or exceeds pressure threshold of displacement switch and meanwhile motor speed is less than lower speed limit of displacement switch, switch to small swash plate dip. If motor speed exceeds upper speed limit of displacement switch or the digital input signal I6 is low, switch to big swash plate dip.

For the constancy of output flow of the oil pump, the driver may compensate speed command of the motor according to displacement ratio when switching to small swash plate dip.

LED Display	Parameter	Function	Initial Value	Un:4
Code	Name	Description	illitiai value	Unit
F45	Plunger pump selection	Selection the model of plunger pump	0: single displacement	0: single displacement 1: double displacement
F46	Displacement ratio of plunger pump	Displacement ratio of small swash plate dip and big swash plate dip.	30	%
F47	Wobble pressure	The threshold value of feedback pressure	195	bar

Commission parameter chart of double-displacement pump control:

	switch	when switching to		
	threshold	small swash plate		
		dip.		
		The duration		
		condition of higher		
	Wahhla	feedback pressure		
E49	woodle	than wobble	100	
Г48	indee delen	pressure switch	100	ms
	Judge delay	threshold when		
		switching to small		
		swash plate dip.		
		The time delayed		
		for speed		
	Wobble	compensation when		
F56	switch rising	switching from	10	ms
	delay	small swash plate		
		dip to big swash		
		plate dip.		
		The time delayed for		
	Wobble	speed compensation		
F57	switch	when switching	10	me
F37	descending	from big swash plate	10	1115
	delay	dip to small swash		
		plate dip.		
	Upper limit	The threshold value		
F58	of speed	of motor speed	1200	rpm
	switch	when switching to		

		big swash plate dip.		
F59	Lower limit of speed switch	The threshold value of motor speed when switching to small swash plate dip.	200	rpm
F65	Displacement switch mode	0: overpressure 1: dwell overpressure	0: overpressure	

7. Multi-pump Parallel Control

For the hydraulic control of large-tonnage injection molding machines, the single-pump system has been far from meeting the flow demand owing to the limit of pump displacement and motor power. To obtain large flow quantities, it is necessary to connect oil outlets of multiple single-pump systems in parallel. In converging system, for the purpose of higher production efficiency and shorter processing cycle, the single-loop hydraulic system is divided into double loops or triple loops with independent control hydraulic system so as to accomplish two or more motions. In diverging control, every loop controls the flow and pressure independently. In converging control, however, one host driver controls the pressure and total flow of the system while the other drivers conduct single-loop flow control by converting total system flow command of the host driver to flow commands for various loops through the calculation process of flow distribution. The total system output flow is the sum of all output pump flows of various loop systems.

7.1. Multi-Pump Pattern

Once the nodes (in single-pump system) are set to multi-pump pattern as converging type, they can only work in converging control. In this condition, the host node controls the pressure and total system flow by receiving signals of pressure command, flow command and run enable from the upper control system and signals of the pressure transducer at the oil outlet. The slave nodes manage the speed by converting total system flow command from CAN communication into speed command through the following formula of flow distribution.

Flow distribution method for multi-pump convergence and compound convergence:

Each node (in single-pump system) has a flow it can bear alone, that is, max. private flow.

Max. private flow = node max. flow × flow enter threshold ratio

If the command total system flow is lower than the max. private flow of the host pump 0, the host pump 0 bears all flow demands of the system; if higher, the host pump 0 provides its max. private flow and meanwhile the slave pumps bear the rest flow demand; if the rest flow demand is lower than the max. private flow of the slave pump 1, the slave pump 1 bears all rest flow on its own; if the rest flow demand is higher than the max. private flow of the slave pump provides its max. private flow and meanwhile other slave pumps bear the rest flow demand; it goes on by such analogy until all the rest flow quantities are undertaken by the rest slave pumps; if the max. private flow of the last slave pump is lower than the rest flow demand, that is, the max. private flow sum of all pumps cannot bear the total system flow demands, then the system flow demands will be distributed to all pumps on average (at a certain rate).

1) System diagram of multi-pump pattern:

2) Wiring scheme of multi-pump pattern:

7.2. Compound Pattern

The system has two control modes: converging mode and diverging mode. It can switch between the two modes of various nodes through the signals of digital input I1 (C/D). In diverging mode, each node accomplishes flow control and pressure as a single-loop hydraulic system. In converging mode, just the same as in multi-pump pattern, the host node controls the pressure and the total system flow while the slave nodes manage the speed by converting total system flow command from CAN communication into speed command through the above formula of flow distribution. 3) System diagram of compound pattern:

7.3. Multi-Mode Pattern

This system is composed of three nodes each of which consists of one or more single-pump systems. The single-pump system refers to the control unit. A node with one control unit is called single-unit node and a node with several control unit can be considered as the node made up with duplex pumps or multiplex pumps. The multi-unit node is comprised of one control unit and one or more follow units. At every node, there is one pressure transducer connected to the control unit which receives signals of pressure command and flow command from the upper control system through the analog interfaces of AIN1 and AIN2. The two DA outputs of the control unit shall be connected to two analog input interfaces AIN1 and AIN2 of the follow unit separately as the speed command signal of the motor and the enable signal of the driver. There are series connections among RDY output interfaces of which the positive pole is linked with the power supply of 24V and the negative pole is linked with the digital input interface I7 through which the control unit gets running status of the follow unit driver.

The digital signal I1 (C/D) is applied to each node for the switch of control modes. High I1 (C/D) indicates the node is in converging mode while low I1 (C/D) indicates the node is in diverging mode. In converging mode, the converging node number is variable and the slave nodes run at the same speed with the host node which bears pressure control and total system flow. The formula of flow distribution mentioned above is not available in multi-mode pattern. In diverging mode, the control units of the nodes conduct pressure control and flow control separately at the same speed with the follow units.

System diagram of multi-mode pattern:

Wiring scheme of compound pattern and multi-mode pattern:

LED Display Code	Parameter Name	Function Description	Initial Value	Unit
P00	Net enable	Net enable control. First, set the parameter of each node for the single pump, converging type of nodes, node No., slave node numbers of the host node, flow enter threshold, flow enter hysteresis upper limit and flow enter hysteresis lower limit. Then perform the net enable command from the slave nodes to the host node in sequence. 0: disable 1: enable	0: disable	
P01	Net open tube	Disable or enable the driver of all nodes, only applicable in multi-pump mode.0: close tube1: open tube	0 : close tube	
P02	Converging type	Select converging type 0: single pump 1: compound 2: multi-pump 3: multi-mode	0: single pump	
P03	Node No.	It indicates the host machine if the node number is zero and the	0	

Commission parameter chart of multi-pump parallel control:

		slave machine if the number is between 1 and 15.		
P04	Slave node number	If the node number is zero, the slave number indicates the number of slave machines connected to the host machine.	0	
P05	Node type	Set the operation mode of the driver at the nodes. 0: single unit 1: control unit 2: follow unit	0:single unit	
P06	Flow enter threshold	The precondition for the next pump to join in operation. When the system flow exceeds the flow enter threshold of the pump, the next pump will join in operation.	25	%
P07	Hysteresis upper limit of flow enter	The precondition for the next pump to join in operation. It is used to prevent the pump from starting and stopping back and forth when the flow reaches to the threshold.	5	%
P08	Hysteresis lower limit of flow enter	The precondition for the next pump to join in operation. It is used to prevent the pump from starting and stopping back and	2.5	%

7. Multi-pump Parallel Control

forth when the flow reaches to the threshold Multi-pump Segment 0 of the proportional pressure P09 parameter under multi-pump 8000 proportional pressure PID control. gain 0 Multi-pump Segment 0 of the integral pressure P10 88 parameter under multi-pump integral gain pressure PID control. 0 Multi-pump Segment 0 of the differential pressure P11 parameter under multi-pump 0 differential pressure PID control. gain 0 Multi-pump Segment 1 of the proportional pressure P12 parameter under multi-pump 8000 proportional pressure PID control. gain 1 Multi-pump Segment 1 of the integral pressure P13 parameter under multi-pump 88 integral gain pressure PID control. 1 Multi-pump Segment 1 of the differential pressure P14 parameter under multi-pump 0 differential pressure PID control. gain 1 P15 Multi-pump Segment 2 of the proportional 8000

	pressure	parameter under multi-pump		
	proportional	pressure PID control.		
	gain 2			
P16	Multi-pump pressure integral gain 2	Segment 2 of the integral parameter under multi-pump pressure PID control.	88	
P17	Multi-pump pressure differential gain 2	Segment 2 of the differential parameter under multi-pump pressure PID control.	0	
P18	Multi-pump pressure proportional gain 3	Segment 3 of the proportional parameter under multi-pump pressure PID control.	8000	
P19	Multi-pump pressure integral gain 3	Segment 3 of the integral parameter under multi-pump pressure PID control.	88	
P20	Multi-pump pressure differential gain 3	Segment 3 of the differential parameter under multi-pump pressure PID control.	0	

7. Multi-pump Parallel Control

8. Run Commission

This servo hydraulic system for MH500 series injection molding machines has two commission methods to cater for clients of various demands. The user can commission it through the external HMI (selective pairing) which looks friendly with its LCD of 5.7 inches and its interface in Chinese. On the other hand, the user can also commission it through the built-in LED panel of the servo driver.

8.1. Commission Flow Chart

8.2. Commission Steps

The following instruction describes specific operation steps of commissioning the system through HMI. No operation steps of LED panel are mentioned here excepting some graphs indicating the parameter identifiers to be set. Please refer to Chapter 5.4 LED Display and Operation if it is necessary to commission the system through LED panel.

- 8.2.1. Commission Preparation
 - (1) Installation confirm

Inspect connections of all terminals and ensure that all fix screws have been fastened in case of any slippage.

(2) HMI connection

This servo hydraulic system for the MH500 series supports HMI hot swapping. Plug the terminal DSUB9 of the HMI into the terminals CN4 in the front cover of the driver to connect the HMI to the driver. (Skip this step if LED panel is used to commission the system)

(3) Enable forbidden

In order to ensure system security during commission process, it is necessary to disable the system enable before switching on the three-phase AC. When the HMI is not turned on, there are two ways of disabling the system enable:

Method 1: Cut off the terminal wiring of the driver enable.

Method 2: Disable the system enable if the upper computer is equipped with the function of system enable and the enable output has been connected to the enable terminals of the driver.

8.2.2. Motor Selection

(1) Motor selection operation

Refer to the List of Motor Selection in Chapter 5.5.4. Switch to the "set" mode by pressing \checkmark and \blacktriangleright . Move the highlight cursor to "motor selection" through \blacktriangle and \bigtriangledown and press \fbox to enter.

Monitor	Set	Commission	
Motor selection		U1004F.15.3	
Pump selection		SETTIMA 28mL/r	
Pressure feedback	zero calibr	ation	
Pressure calibratio	n mode	Linear Calibration	
Flow calibration m	ode	Linear Calibration	
Linear pressure ca	libration		
		-	
System status:		Pressure:	
Revolving speed:	Torque:	Resolver:	

Move the highlight cursor to the number of motor selection through and . Adjust the number through and to

the corresponding number of the motor. (Please refer to the nameplates of motors for specific models. The following chart takes the selection of "K036N20A11" for instance.

Move the highlight cursor through \checkmark and \triangleright to "SAVE" and press to save the parameter and exit to set menu. The current parameter of the motor will be sent to the driver through the HMI. On the right side of the motor selection menu, it will display "parameter downloading" during the process and then the motor model "K036N20A11" after the process.

Set Para	ameter
Motor selection	(Set)
K036N20A	11
0 0 1	
SAVE	CANCEL
System status:	Pressure:
Revolving speed: Torque:	Resolver:

Set parameter of LED panel commission:

E			B	
---	--	--	---	--

8.2.3. Pump Selection

(1) Pump selection operation

Refer to the List of Oil Pump Models in Chapter 5.5.4. Move the highlight cursor through \triangle and $\overline{\checkmark}$ to "pump selection" and press $\overline{\textcircled{max}}$ to enter.

Monitor	Set	Commission
Motor selection		U1004F.17.3
Pump selection		SETTIMA 28mL/r
Pressure feedback	zero calibr	ration
Pressure calibration mode		Linear Calibration
Flow calibration mode		Linear Calibration
Linear pressure ca	libration	
		-
System status:		Pressure:
Revolving speed:	Torque:	Resolver:

Move the highlight cursor through \checkmark and \triangleright to the number of pump models and then adjust it through \land and \bigtriangledown to the corresponding number of the desired pump model. (Please refer to the nameplate of the selected pump for the specific model. The following chart takes the selection of "SETTIMA 28mL/r" for instance.)

Move the highlight cursor through and to "SAVE" and press to save and exit to set menu. The current parameter of the pump will be sent to the driver through the HMI.

On the right side of the "pump selection" menu, it will display "parameter downloading" during the process and then the pump model "SETTIMA 28mL/r" after the process.

Set j	barameter
Pump selection	(Set)
SETTIMA 28 0 1 9	3mL/r
SAVE	CANCEL
System status:	Pressure:
Revolving speed: Torqu	ue: Resolver:

Set parameter of LED panel commission:

If the selected pump is not included in the selection list, then reset the parameter. Adjust the pump displacement (reset) [F31] and the pump leakage (reset) [F32] in the set menu.

If the system configuration is the same to the default value, then skip the following steps from 8.2.4~(3) to 8.2.4~(12).

- (2) Backpressure selection [F43] (manual backpressure by default)
 - (a) Auto: electronic backpressure as the storing method
 - (b) Manual: manual backpressure as the storing method
- (3) Pressure transducer selection [F44] (5V by default)
 - (a) 5V: Voltage range of driver sampling 0~5V, output range of transducer 1~5V, test range 0~200bar.
 - (b) 10V: Voltage range of driver sampling $0\sim10V$, output range of transducer $0\sim10V$, test range $0\sim250$ bar.
- (4) Plunger pump selection [F45] (single-displacement plunger pump by default)

- (a) Double displacement: double-displacement plunger pump
- (b) Single displacement: single displacement plunger pump
- (5) Plunger pump displacement ratio [F46] (skip this if it is a single displacement plunger pump)

The parameter value is the ratio between the small displacement and the large displacement.

(6) Wobble switch mode [F65] (skip this if it is a single displacement plunger pump)

Set the mode of displacement switch.

(7) Wobble switch pressure threshold [F47] (skip this if it is a single displacement plunger pump)

Set the pressure threshold of displacement switch.

(8) Wobble pressure judge delay [F48] (skip this if it is a single displacement plunger pump)

Set the pressure duration of wobble switch

(9) Wobble switch rising delay [F56] (skip this if it is a single displacement plunger pump)

Set the rising duration of displacement switch

(10) Wobble switch descending delay [F57] (skip this if it is a single displacement plunger pump)

Set the descending duration of displacement switch

(11) Speed switch upper limit [F58] (skip this if it is a single displacement plunger pump)

Set the upper limit of speed switch

(12) Speed switch lower limit [F59] (skip this if it is a single displacement plunger pump)

Set the lower limit of speed switch

(13) Multi-section pressure PID set

If the system needs to be controlled by sections with various pressure PID parameters, make a connection between the two digital input terminals I3 (CN3-9) and I4 (CN3-10) as the index signal in control section, then set the pressure PID parameters (4 sections in total) corresponding to those sections. The relationship between the digital input signals and the different sections of pressure PID is shown in the following chart:

Single-Pump Pressure Control PID Parameter Sections: Pressure PID Parameter				
I4	13	KP NO.	KI NO.	KD NO.
low	low	0	0	0
low	high	1	1	1
high	low	2	2	2
high	high	3	3	3

8.2.4. Pressure Feedback Zero Calibration Method

In set mode, move the highlight cursor through \bigtriangleup and \bigtriangledown to "pressure feedback zero calibration" and press $\textcircled{}^{\texttt{MR}}$ to enter its set interface.

Monitor	Set	Commission	
Motor selection Pump selection		U1004F.17.3 SETTIMA 28mL/r	
Pressure feedback zer	o calibr	Lincer Calibration	
Flow calibration mode		Linear Calibration	
Linear pressure calibr	ation		
a			
System status:		Pressure:	
Revolving speed: To	rque:	Resolver:	

Adjust the pressure of system oil circuit to "0" (subject to the pressure gauge of the injection molding machine) before conducting pressure feedback zero calibration.

Move the highlight recursor through \checkmark and \triangleright to "SAVE" and press m to return to the set menu in which the "pressure feedback zero calibration" will be displaying "calibrating". When the "calibrating" disappears, it indicates the calibration is accomplished.

Set parameter of LED panel commission:

8.2.5. Initial Angle Test of the Motor

(1) Diagnosis function "enable"

Switch to "commission mode" through \checkmark and \blacktriangleright . Move the highlight cursor through \blacktriangle and $\overline{\checkmark}$ to "diagnosis function" and press $\overline{\textcircled{mu}}$ to turn its status to "enable".

Monitor	Set	Commission	
Run enable			
Diagnosis enable		ENABLE	
Driver test		DISABLE	
Initial angle Measu	irement	DISABLE	
Jog enable		DISABLE	
Control mode		PROCESS MODE	
System status:		Pressure:	~
Revolving speed: Torque:		Resolver:	

Set parameter of LED panel commission:

(2) Initial angle test of the motor

After entering the commission interface, move the highlight cursor through to "initial angle test" and press to turn its status to "enable".

Monitor	Set	Commission		
Run enable				
Diagnosis enable		ENABLE		
Driver test		DISABLE		
Initial angle measurement		DISABLE		
Jog enable		DISABLE		
Control mode		PROCESS MODE		
System status:		Pressure:		
Revolving speed: Torque:		Resolver:		

After set, the system will measure the initial angle automatically and it will display "auto measuring" on the right side of "initial angle measurement".

Monitor	Set		Commission	
Run enable				
Diagnosis enable			ENABLE	
Driver test			DISABLE	
Initial angle meas	urement	AUTO M	IEASURING	
Jog enable			DISABLE	
Control mode		PROC	CESS MODE	
~				
System status:			Pressure:	
Revolving speed:	Torque:		Resolver:	

After measurement, it will display "success" on the right side of "initial angle measurement" and the result in the item of "resolver offset" which will switch to "disable" status automatically after a while. Set parameter of LED panel commission:

B			B	8
---	--	--	---	---

The operator must store the measuring value and the latest calibration status to EEPROM through the function of "parameter download" in the set menu. Otherwise, when the system is powered off, the calibration status will turn back to the value before calibration. The operation of parameter download is as followed:

In parameter download mode, move the highlight cursor through \triangle and ∇ to "parameter download" and press to enter its set interface.

l/Iulti-pump	Parameter download
Parameter download	
Factory reset	DISABLE
Batch parameter read	DISABLE
Batch parameter download	NO PARAMETER
Batch parameter delete	NO PARAMETER
	P
System status:	Pressure:
Revolving speed: Torque:	Resolver:

Set 1	parameter
Parameter	download
CONFIRM	CANCEL
System status:	Pressure:
Revolving speed: Torq	ue: Resolver:

Move the highlight cursor through / to "CONFIRM" and press to return to of "parameter download" on the right side of which it will display "downloading". When the "downloading" disappears, it indicates parameter download has been accomplished. Set parameter of LED panel commission:

E			E	B
---	--	--	---	---

8.2.6. Slow Jog & Exhaust

Test purpose: to check whether the basic functions of hydraulic system operation are normal.

(1) Inspection and preparation before operation

Before operating the servo system for the first time, the operator ought to inspect and ensure the hydraulic loop connection and servo system electrical connection are correct, meanwhile the oil pump displacement and working pressure are in accordance with the values marked on the nameplate. In the early stage, adjust the system such as changing the overflow pressure of overflow valve to the minimum, until the output oil will return to the oil box directly. Attention: forbid starting the machine while the oil pump is outputting side interception flow.

(2) Slow light load operation

Start jog enable and adjust max. jog speed to enter commission interface. Move the highlight cursor through \triangle and ∇ to the item of "jog enable" and presss to keep the item in the state of "enable".

Monitor	Set	Commission
Run enable		
Diagnosis enabl	e	ENABLE
Driver test		
Initial angle mea	asurement	
Jog enable		ENABLE
Control mode		PROCESS MODE
		-
System status:		Pressure:
Revolving speed	1: torque	Resolver:

After adjustment, the operator can conduct jog enable of the motor in the forward/reverse direction through $\overline{\mathbb{T}}$. Pressing on $\overline{\mathbb{T}}$ to maximize the jog speed and rotate constantly in the forward/reverse direction (use \mathbb{A}/\mathbb{V} in LED panel commission). Set parameter of LED panel commission:

(a) Confirm operating conditions

Ensure the revolving direction of the pump is in line with the

direction of the arrow on the pump caution plate while the motor is revolving in the forward direction, the noise and virbration are within the allowable range and oil absorption of the pump is working in normal.

Wrong Condition	Phenomenon	Solution	
Condition 1	The motor does not revolving and the torque value is very high.	Change the revolving direction of the motor in set menu. Reoperate as the steps from 8.2.5 to 8.2.6 (2) (b)	
Condition 2	The revolving direction of the pump and the direction of the arrow on the pump caution plate are different while the motor is revolving in the forward direction.	Change the revolving direction of the motor in set menu. Reoperate as the steps from 8.2.5 to 8.2.6 (2) (b)	

(b) Exhaust

Ensure the operating conditions in 8.2.6 (2) (b) are normal, then keep the pump revolving in forward direction to exhaust the air in the hydraulic system.

Attention: It is normal to hear noises at the start since there might be air mixed in the hydraulic oil. If the noises are not disappearing in a certain time, it is necessary to exhaust the air from the hydraulic oil circuit.

(c) Disable jog enable and diagnosis enable

Disable the "jog enable" as the method in 8.2.6 (2) (a) , then adjust the status of "diagnosis function" to "disable" as the method in 8.2.5 (1) .

Monitor	Set	Commission
Run enable		DISABLE
Diagnosis enable		DISABLE
Driver test		
Initial angle measurement		
Jog enable		
Control mode		PROCESS MODE
		-
System status:		Pressure:
Revolving speed:	Forque:	Resolver:

Set parameter of LED panel commission:

8.2.7. Multi-pump Parameter Set (skip this if it is a single-pump system)

(1) Converging type set

Switch to "multi-pump" through , then move the highlight cursor through to "converging type" and press c to enter its set menu.

Multi-pump	Parameter	r download	
Net enable		DISABLE	
Net open tube		CLOSE TUBE	
Converging type		SINGLE-PUMP	
Node No.		0	
Slave node number		0	
Node type		Single-unit	
			_
System status:		Pressure:	
Revolving speed: Torque:		Resolver:	

Move the highlight cursor through to type selection and change the converging type to the desired type through (take "multi-pump" for instance as the above graph).

Set para	meter	
Converging type		
Multi-pump		
SAVE	CANCEL	
System status:	Pressure:	
Revolving speed: Torque:	Resolver:	

Move the highlight cursor through to "SAVE" and press to save and exit to multi-pump menu, then it will display all type for selection on the right side of converging type menu (take "multi-pump" for instance as the above graph). Set parameter of LED panel commission:
E			8	8
---	--	--	---	---

(2) Node No. set

Switch to "multi-pump" through /, then move the highlight cursor through / to "Node No." and press to enter set menu.

Multi-pump	Parameter download		
Net enable		DISABLE	
Net open tube		CLOSE TUBE	
Converging ty	ne	MULTI-PUMP	
Node No.	Pe		
Slave node number		0	
Node type		Single-unit	
~ 1		č	
System status:		Pressure:	
Revolving spee	d: Torque:	Resolver:	

Move the highlight cursor through to type selection and set the node No. through (); set the node No. of the host system as 0 and the node No. of the slave system as "1", "2" and so on according to the number of slave systems (take the set of "0" for the host system as the following graph).

Set para	ameter
Node No.	
00	
-	
SAVE	CANCEI
	ennell
System status:	Pressure:
Revolving speed: Torque:	Resolver:

Move the highlight cursor through to "SAVE" and press to save and exit to multi-pump menu, then it will display the node No. of the current system on the right side of node No. menu (take the selection of "0" for instance as the above graph). Set parameter of LED panel commission:

(3) Slave node number set (necessary for node No. 0 and skip this if they are other node numbers)

Switch to "multi-pump" through , then move the highlight cursor through to "slave node number" and press to enter its set menu.

Multi-pump Parameter download		
Net enable	DISABLE	
Net open tube	CLOSE TUBE	
Converging type	MULTI-PUMP	
Node No.	0	
Slave node number	0	
Node type	Single-unit	
System status:	Pressure:	
Revolving speed: Torque:	Resolver:	

Move the highlight cursor through to the type selection and set the number of slave nodes as well as slave systems through (take the set of "1" for one slave system for instance as the following graph).

	Set parameter	
Slave node num	ber	
01		
-		
SAVE	(CANCEL
5.7.12		
System status:		Pressure:
Revolving speed:	Torque:	Resolver:

Move the highlight cursor through to "SAVE" and press to save and exit to multi-pump menu, then it will display the slave node number of the current system on the right side of the slave node number menu (take the selection of "1" for instance as the above graph).

Set parameter of LED panel commission:

(4) Multi-pump flow set

Set the "flow enter threshold" [P06], 25% in general.

Set the "flow enter hysteresis upper limit" [P07], 5% in general.

Set the "flow enter hysteresis lower limit" [P08], 2.5% in general.

(5) Net enable set and net open tube set

Net enable: In the order of slave machines first and the host machine next, set the "net enable/disable" [P00] separately for the driver.

Net open tube: Only effective when the converging type is multi-pump mode. Set "net open tube" [P01] to enable the motors for all drivers in the multi-pump parallel system.

(6) Node type set

If a certain node in multi-pump parallel system is a multi-unit node comprised of several drivers, it is necessary to set the parameters of "node type" [P05] for those drivers at this node.

8.2.8. Pressure Calibration

Attention: The calibrations are different in the patterns of "single-pump", "compound", multi-mode" or "multi-pump".

■ Single pump pattern:

Calibrate directly, regardless of the "net enable" [P00] parameter.

Compound pattern and multi-mode pattern:

Disable "net enable" [P00] in "multi-pump" menu first, then calibrate each node as the calibration method in the single-pump system.

■ Multi-pump pattern:

First disable the "net enable" [P00] in "multi-pump" menu and set the "max. flow" [F13] and "max. pressure" [F12] for each node, then enable the net of multi-pump parallel system as the method in 8.2.7(5). At this time, the max. system pressure is the min. value of the "max. pressure"at the host and slave nodes. At last, calibrate as the following method.

Disable the "run enable" [H00] (disable the "net open tube" [P01] in multi-pump pattern) and change the "process command mode" to "analog input".

Monitor	Set	Commission
Run enable		DISABLE
Diagnosis enable		DISABLE
Driver test		
Initial angle measur	ement	
Jog enable		
Control mode		PROCESS MODE
System status:		Pressure:
Revolving speed: T	orque:	Resolver:

Monitor	Set		Commission
Speed command			0 R/M
Process command mod	le	ANA	LOG INPUT
Flow command			0.0L/M
Pressure command			0.0KG
System status:			Pressure:
Revolving speed: Tor	que:		Resolver:

Set parameter of LED panel commission:

(1) Filtering adjust

Set paran	neter
Pressure filtering	(Set)
Pressure Analog Input 0 1	81.0
SAVE	CANCEL
System status: Revolving speed: Torque:	Pressure: Resolver:

Set parameter of LED panel commission:

Adjust pressure command of the upper computer to 40% and observe the change of pressure analog input.

Increase the parameter value of pressure filtering in the method of parameter set until the pressure analog input fluctuation reaches the standard in the chart.

Pressure analog	<0.21/	Measure this when the
input fluctuation	≥0.2 V	pressure command is 40%

(2) Calibration

Calibration purpose: Only with the reference analog quantity given by the control system for the servo driver can the servo system convert the analog quantity of control system to the desired quantity in real operation.

(a) Set the max. pressure and pressure full scale

The purpose of setting the max. pressure is to avoid harm to the system caused by the abnormal pressure command exceeding the upper limit of the system. In multi-pump parttern, this parameter has been set before, thus skip this step.

In set mode, move the highlight cursor through $(\mathbf{A})/(\mathbf{V})$ and press (\mathbf{W}) to enter its set interface.

Adjust the parameter value of the max. pressure as the method of numeric parameter set (take the set of 165kg for instance as the following graph).

Set parameter		
Max. pressure	(Set)	
165KG		
SAVE	CANCEL	
	0111(022	
System status:	Pressure:	
Revolving speed: Torque:	Resolver:	

Set parameter of LED panel commission:

Adjust the "pressure full scale" to the desired value in the same way (take the set of 160kg for instance as the following graph).

Set parameter		
Pressure full scale	(Set)	
160 KG		
_		
SAVE	CANCEL	
System status:	Pressure:	
Revolving speed: Torque:	Resolver:	

Set parameter of LED panel commission:

(b) Linear calibration

Set the "pressure calibration mode" as "linear calibration" as the method of functional parameter set.

Set parameter of LED panel commission:

Move the highlight cursor through $(\mathbf{A})/(\mathbf{V})$ to "linear pressure calibration" and press (\mathbf{A}) to enter.

Move the highlight cursor through to the selection item of linear pressure calibration and adjust it to "zero position" through .

Move the highlight cursor through to "SAVE", then adjust the pressure command of the upper computer to Obar and press to its set menu.

Set parameter	er	
Linear pressure calibration	(Set)	
Pressure analog input 3.27V 0.327A		
Zero position		
SAVE CANCEL		
System status:	Pressure:	
Revolving speed: Torque:	Resolver:	

If "success" appears for a while in the status bar of linear pressure calibration and then disappears, it indicates calibration has been accomplished successfully.

Monitor	Set	Commission	
Max. flow		101 L/M	
Max. pressure		165 kg	
Pressure calibration	on mode	Linear calibration	
Flow calibration mode		Linear calibration	
Linear pressure calibration		Success	
Linear flow calibi	ration		
System status:		Pressure:	
Revolving speed: Torque:		Resolver:	

If the state bar of linear pressure calibration shows "failure", then the operator needs to recalibrate until it displays success. Set parameter of LED panel commission:

E				E
---	--	--	--	---

The calibration method of full scale is the same to that of zero position. Adjust the pressure command of the upper computer to the pressure of full scale and change the pressure calibration point to "full scale". Then adjust the pressure of the injection molding machine to the corresponding pressure of full scale, finally, calibrate and confirm the adjustment.

(c) Fold line calibration

The method of fold line calibration is almost similar to that of linear calibration. The operator can regard the fold line calibration as the composition of several line calibrations.

Set the "pressure calibration mode" as "fold line calibration" in the method of functional parameter set.

Monitor	Set	Commission	
Motor solation		U1004F.15.3	
Pump selection		SETTIMA 28mL/r	
Pressure feedback	zero calibi	ation	
Pressure calibratio	on mode	Fold line calibration	
Flow calibration mode		Linear calibration	
Linear pressure ca	libration		
C		D	
System status:	_	Pressure:	
Revolving speed:	Torque:	Resolver:	

Set parameter of LED panel commission:

Move the highlight cursor through to fold line pressure calibration and press to enter the selection interface of fold line pressure calibration point.

Monitor	Set	Commission	
Motor selection		U1004F.15.3	
Pump selection		SETTIMA 28mL/r	
Pressure feedback	zero calibr	ration	
Pressure calibration	on mode	Fold line calibration	
Flow calibration mode		Linear calibration	
Fold line pressure	calibration		
			-
System status:		Pressure:	
Revolving speed:	Torque:	Resolver:	

Before the following operation, please adjust the pressure command of the injection molding machine to 0bar first.

Move the highlight cursor through to fold line pressure

calibration point and adjust it to "00", the same to the pressure calibration of "0bar", through ()

Move the highlight cursor through to "SAVE".

Set parameter	
Fold line pressure calibration	(Set)
Pressure analog input 3	9.27V 0.327A
Fold line 0 0 0 % 0 K	G
SAVE	CANCEL
System status: Revolving speed: Torque:	Pressure: Resolver:

Press (M) to return to its set menu. If "success" appears for a

while in the state bar of fold line pressure calibration and disappears, it indicates the calibration point has been calibrated successfully.

Monitor	Set	Commission	
Max. flow		101 L/M	
Max. pressure		165 K G	
Pressure calibration	on mode	Fold line calibration	
Flow calibration mode		Linear calibration	
Fold line pressure	calibration	Success	
Linear flow calibration	ation		
System status:		Pressure:	
Revolving speed:	Torque:	Resolver:	

If the state bar of fold line pressure calibration shows "failure", then the operator needs to recalibrate until it displays success.

Set parameter of LED panel commission:

88		B	8
----	--	---	---

The calibration method of other calibration points is the same to that of the Obar point. Referring to the following chart, the operator can adjust the upper computer to the corresponding pressure command value.

	Calibration Quantity
No.	(Relationship with
	Full Scale)
0	0%
1	5%
2	10%
3	20%
4	30%
5	40%
6	50%
7	60%
8	70%
9	80%
10	90%
11	95%
12	100%

8.2.9. Flow Calibration

The calibrations are different in the patterns of "single pump", "compound", "multi-mode" or "multi-pump":

■ Single pump:

Calibrate directly in spite of the "net enable" [P00] parameter.

■ Compound and multi-mode:

Keep the "net enable" [P00] of the multi-pump menu in the state of "disable", then calibrate the nodes separately as the calibration method in single-pump system.

■ Multi-pump:

There is "max. flow" set for every node in Pressure Calibration of Chapter 8.2.8. The sum of all these max. flows is the max. system flow, thus there's no need to set the "max. flow" during flow calibration.

Disable the "run enable" [H00] (disable the "net open tube" [P01] in multi-pump pattern) and turn the "process instruction mode" [H06] to "analog input.

- (1) Filtering adjustment[F09] The same to 8.2.8 (1)
- (2) Calibration
 - (a) Set the max. flow and flow full scale[F13][F11] The same to 8.2.8 (2) (a)

There's no need to set this in the multi-pump pattern since it has been set in 8.2.8.

- (b) Linear calibration [F07] The same to 8.2.8 (2) (b)
- (c) Fold line calibration [F07] The same to 8.2.8 (2) (c)
- (3) Parameter download

The above parameter set must be downloaded before the driver

is powered off, otherwise the original parameter will remain unchanged. Refer to Chapter 8.2.5 for the methods of parameter download.

8.2.10. Dwell Test

(1) Low voltage dwell test

Please adjust the overflow pressure of the overflow valve to the max. value before conducting the following operation.

In the commission mode, when the control mode is "process mode", move the highlight cursor through \triangle and ∇ to "process instruction mode" and press $\overline{\mathbb{R}}$ to the set interface.

Monitor	Set	Comm	ission	
Speed command			0 R/M-	
Process instruction	mode	ANALOG I	NPUT	
Flow command		0.	0L/ M	
Pressure command		(0.0KG	
System status:		Pressu	re:	
Revolving speed: 7	orque:	Resolv	er:	

Change the name of process instruction mode to

"communication input" through \triangle and $\boxed{\bigcirc}$.

Move the highlight cursor through \checkmark and \blacktriangleright to "SAVE" and press "confirm" to return to the commission menu. Then the user may find that "process instruction mode" has been changed to "communication input".

Set para	ameter
Process instruction mode	(set)
СОММИИNІСАТ	ION INPUT
SAVE	CANCEL
System status:	Pressure:
Revolving speed: Torque:	Resolver:

Set parameter of LED panel:

Adjust "flow command" [H07] to 10L/M; "pressure command" [H08] to 20 bar and "run enable" [H00] to the state of "enable".

Check whether there is oil leakage; whether the pressure feedback value [d09] on the HMI and the pressure gauge of the injection molding machine are 20 bars.

(2) High voltage dwell test

After the low voltage dwell test, the following steps can be conducted for the high voltage dwell test. When "run enable"[H00] is in the state of "enable", "flow command" [H07] equals to 80% of the max. system flow and "pressure command" [H08] will gradually rise to the max. pressure demand of the injection molding machine. Then observe the real pressure [d09] and motor speed [07] of the system.

If the real system pressure reaches to the command value but

the average motor speed exceeds the recommended value, the further steps need to be done to find the cause of oil leakage:

Case 1: abnormal leakage of the oil pump

Case 2: abnormal leakage of the hydraulic oil circuit

Case 3: leakage of the overflow valve

Mersurement Definition	Passing Criteria
	(Recommanded Value)
Dwell motor speed (pressure	60-100rpm (plunger pump)
command 100%FS, dwell time	<150rpm (screw pump)
5s)	<300rpm (gear pump)

Ensure the dwell pressure and motor speed for dwell have reached the passing criteria, the check as the following chart to see whether the pressure fluctuation has met the system demand meanwhile.

Mersurement Definition	Passing Criteria	
	(Recommanded Value)	
Pressure fluctuation (pressure	≤3bar (plunger pump)	
	≤2bar (screw pump)	
command 10076F3, dwent time 357	≤3bar (gear pump)	

8.2.11. Overflow Valve Calibration

When "run enable" [H00] is in the state of "enable", "flow command" [H07] equals to 30% of the max. system flow and "pressure command" [H08] means the protection pressure of the overflow valve. Adjust the overflow pressure of the overflow valve to ensure the overflow valve can discharge the effusive flow when the real pressure exceeds the protection pressure.

8.2.12. Calibration Review

Set the "pressure command" [H08] of the upper computer separately as 2bar, 10bar, 50bar, 100 bar, -2bar of the full scale pressure and full scale pressure. Check if the values of pressure gage equal to the set values. If not, recalibrate the pressure.

Set the "flow command" [H08] of the upper computer separately as 2%, 50%, 98% and 100%. Check if the revolving speed of the motor is in proportion to the quantity of hydraulic oil flow (measure through revolving speed of hydraulic motor or the speed of injection cylinder). If not, recalibrate the flow.

8.2.13. All-auto run and system performance adjustment

(1) System restart

After powering off the system, restart the "run enable", then conduct inversion operation as the disabling method in Section (3) of Chapter 8.2.1.

Restart the system power, ensure the servo system is working, let the driver of injection molding machine control the servo system on the basis of the product parameters of injection molding machine.

(2) System performance adjustment

The process control of the servo system contains the following gain parameters which can be set to adjust the response and static characteristics of the servo system.

Set for the single-pump pattern or diverging pattern:

Pressure proportional gain 0-3, [F19] [F22] [F25] [F28]

Pressure integral gain 0-3, [F20] [F23] [F26] [F29]

Set for converging pattern:

Multi-pump pressure proportional gain 0-3, [P09] [P12] [P15]

[P18]

Multi-pump pressure integral gain 0-3, [P10] [P13] [P16] [P19] Speed proportional gain, [F14] Speed integral gain, [F15]

Once the set of motor selection and pump selection have been done, the driver will have selected the matching values of corresponding motor and pump. If you are not satisfied with the above system performance index, please conduct fine tuning the above parameter values to meet your requirement.

9. Alarming & Processing

9.1. List of Protection Display

Servo driver itself has functions of alarming and safeguard in case of overvoltage and overcurrent. Once any abnormal faults occur, the safeguard function will be activated to keep servo driver from outputting and motor from running. Please look for error causes and solutions according to the content of servo driver's abnormal display. The latest five error records will be kept in the internal storage as well as the time they occur and they can be checked through digital LED operation panel or HMI communication.

Code	Content	Implication	Code	Content	Implication
Err01	IPM error	Instant short-circuit current in power module	Err02	Overcurrent	The output current exceeds the allowable value of the driver.
Err03	DC overvoltage	The DC voltage on the main circuit is excessively high.	Err04	DC undervoltage	The DC voltage on the main circuit has been lower than the allowable value in the process of motor operation.
Err05	Overspeed in forward direction	The revolving speed in forward direction of the servo	Err06	Module overheated	The radiator of servo driver is overheated.

		motor is excessively high.			
Err07	Motor overheated	The winding of the servo motor is overheated.	Err08	Software fault	Abnormal software operation of the servo driver.
Err09	CAN fault	When the process command mode is in CAN continue or multi-pump parallel application, the driver with CAN communicatio n fault will alarm.	Err10	Environment overheated	The air temperature inside the driver is excessively high.
Err11	Self-checking fault	The internal hardware of the driver is anomalous.	Err12	Mission reentry	Software routine call fault
Err13	Excessive oil pressure	The oil pressure of the system surpasses the allowable value.	Err14	Overspeed in reverse direction	Overspeeded motor reversal in the process control mode.
Err15	Pressure transducer fault	Wiring error or breakdown of pressure transducer.	Err16	Brake resistor failure.	Brake resistor is unlinked or damaged.
Err17	AC overvoltage	The input AC voltage is excessively high.	Err18	EEPROM fault	Abnormal data of the servo unit EEPROM

Err19	Enabling undervoltage	The DC voltage on the main circuit is excessively low at the beginning of electrifying motor.	Err20	AC undervoltage	The input AC voltage is too low.
Err21	Braking overload	Overheated brake resistor led by overload.	Err22	Node failure	In multi-pump parallel application, the slave nodes are at fault and the host driver will alarm this fault.
Err23	Rectifying unit fault	Detection value of AV and DV is incompatible.	Err24	Overtime electrifying	Overtime operating of the electrified relay.
Err25	485 communication fault	When the process command mode is in 485 continue, the driver with 485 communicatio n fault will alarm.			

9.2. Analysis of Error Causes

As presented in the following diagram, the electro-hydraulic servo system of the KINWAY injection molding machine is mainly comprised by permanent synchronous motor, motor rotor position or speed transducer, servo driver, oil pump coaxially linked to servo motor, pressure transducer for detecting the system's oil pressure and other critical components.

Technically speaking, all the above components (including the connecting lines) can be identified as error sources. The system error profile is as followed:

It facilitates analyzing errors thoroughly and systematically to have a good master of the error profile so as to find sources quickly and accurately.

9.3. Protection Causes & Measures

When errors with alarming codes occur, the panel display will show the codes which are listed together with measures in the following chart. Please contact with our service department if the problem can't be solved.

Error Code	Content	Cause	Measure
	IPM	Wrong connection between	Check the wiring and
	fault	ground wire and U, V&W	correct the linkage.
		The U, V&W phases of cables	Revise or replace cables
		for motor's main circuit and	of the main circuit for
		ground wire are short circuited.	motor.
		Wrong wiring for the	Check the wiring and
		regenerative resistor.	correct the linkage.
		Servo driver error (error of	
		current feedback circuit, power	Replace servo driver.
Err01		transistor or circuit board)	
		The U, V and W phases of the	
		servo motor and the ground are	
		short circuited.	Replace servo motor.
		The U, V and W phases of the	
		servo motor are short circuited.	
		Wrong parameter set of the	Dearthean
		driver.	Kesei parameters.
		Wrong method (in direction or	Reduce ambient
		distance from other parts) of	temperature of servo unit

	installing servo driver (whether below 45 degrees.
	there is influence from the
	heating equipments around).

Error group 2:

Error Code	Content	Cause	Measure
Err02	Overcurrent	Abnormal wiring of motor (defective wiring or linkage)	Correct the wiring of the motor.
		Abnormal wiring of position transducer (defective wiring or linkage)	Correct the wiring of position transducer.
		Error of servo driver	Replace the servo driver.
Err03 Err17	DC overvoltage AC overvoltage	AC power voltage is too high. Check AC power voltage (whether severe change in voltage).	Adjust the AC power voltage to the normal range.
		High revolution, too much load rotary inertia (lack of ability in regenerative braking).	Reanalyze the load conditions and operation conditions.
		Servo driver fault.	Replace servo driver.

Error group 3:

Error Code	Content	Cause	Measure
E 04	DC undervoltage	Low AC power voltage (whether excessive drop of voltage)	Regulate AC power voltage to normal range.
Err04 Err20	AC	Instant power cut.	Restart after restoration.
Err19	enabling undervoltage	Cable for the main circuit of motor is short circuited.	Revise or replace cable for the main circuit of motor.
		Servo driver error.	Replace servo driver.
	Overspeed in forward	U, V&W phases of wiring for motor in disorder.	Correct wiring of the motor.
E05	direction; Overspeed	Wrong wiring of the position transducer.	Revise wiring of the position transducer.
Err14	in reverse direction	Malfunction of position transducer led by interference.	Implement anti-jamming measure for wiring of position transducer.
		Circuit board fault of servo driver.	Replace servo driver.
Err06	Module	Beyond command load.	Revaluate conditions of
Err07	overheated;		load and operation or
Err10	Motor		motor capacity.
	overheated	The environment temperature	Regulate environment
	Environment	of servo system is beyond 55	temperature of servo unit
	overheated	degrees.	below 55 degrees.
		Wrong wiring for temperature	Correct wiring for

	transducer of servo motor.	temperature transducer	
		Servo driver fault.	Replace the servo driver.

Error group 4:

Error Code	Content	Cause	Measure
	Program fleet	Interference from static or	Restart after restoration.
Err08	fault.	thunder strike.	
	Self-checking	Abnormality in position	Replace motor.
Err11	fault	transducer of motor.	
		Servo driver fault.	Replace servo driver.
E-12	Software	Servo driver fault.	Replace servo driver.
EIIIZ	fault		
	Excessive oil	Wrong wiring of pressure	Revise wiring of pressure
	pressure.	transducer.	transducer.
		Abnormality in pressure	Replace pressure
Err13		transducer.	transducer.
		Improper commission of oil	Adjust the control
		pump control and speed	parameters to the
		control parameters.	reasonable values.

Error group 5:

Error Code	Content	Cause	Measure
	Pressure	Wrong wiring of pressure	Revise the wiring of
	transducer	transducer.	pressure transducer.
Err15	fault	Abnormality of pressure	Replace pressure
		transducer.	transducer.
		Servo driver fault.	Replace servo driver.
	Brake	The revolving energy is	Reselect capacity of
	resistor	beyond capacity of DB	regenerative resistor or
	breakdown.	resistor when DB stops.	revaluate load conditions.
		Check the regenerative	Correct the wiring of
Err16		resistor whether its wiring is	external regenerative
		wrong, separated or broken.	resistor.
		Servo driver fault (fault in	Replace servo driver.
		regenerative transistor and	
		voltage detection parts).	
		Power off during parameter	Reset parameter after
		setting.	restoring to factory
Err18	EEPROM	Power off during error code	default
LIIIO	breakdown	download.	
		Power off during parameter	Replace servo driver.
		setting.	
	Quarland	Long-term power on of motor	Adjust operating conditions
Err 21	of broke	or frequent start and stop.	of motor or replace with
131121	resistor		brake resistor of higher
	10515101.		power.

9.4. Flow Chart of Trouble Shooting

Err01: IPM fault

Err02: Overcurrent

- Err04: DC undervoltage
- Err19: Enable undervoltage
- Err20: AC undervoltage

Err05: Forward overspeed

Err14: Reverse overspeed

Err08: Software error

Err09: CAN error

Err11: Self-checking error

Err16: Braking resistor breakdown

Err25: 485 communication error

10. Maintenance & Inspection

Only maintenance personnel with professional training are allowed to touch the internal circuit parts in case of any electric shock! Good maintenance and regular inspection are necessary for the long-term operation of the servo hydraulic control system of the injection molding machine.

10.1. Attention Items

There is high voltage electricity remaining in the internal capacitance of the driver within a certain time after all power supplies have been cut off. After electricity discharge, measure the voltages of both terminals U+ and U- through the multimeter and make sure they are below 36V. Then inspect the driver.

10.2. Inspection Items

Items needing regular inspection:

Inspection Item	Inspection Content	Inspection Method & Measurement Equipment	Criteria		
	Ambient temperature,				
Application environment	humidity, dust level, dust	Ocular estimation,	Meet the		
	composition, oil/acid	thermometer and hygrometer	the manual.		
	spoils and so on.	ls and so on.			
	Whether the voltage of power supply is normal.		Maat tha		
Power voltage	Whether the logic actions	Voltmeter and	requirements of the manual.		
	(of contactor, air switch,	multimeter			
	etc.) when powering on are normal.				
Appearance		Tighten the	No abnormality		
& parts	Whether there is abnormal	screws;	1.0 donormanty		

vibration, noise,

check	deformation or breakage. Whether the external braking resistor is loose or aged and whether the resistance value is normal.	Ocular estimation; multimeter	
Circuit check	Peculiar smell or not Whether the cooling fan is revolving in normal Whether the connector assemblies are loose. Whether the connecting wires are worn or crushed. Whether the filtering capacitance is deformed or weeping.	Smell, listen and observe.	No abnormality

10.3. Tramegger Test

Tramegger test can only be applied to the test of insulativity between motor winding and casing. Before test, ensure all wires connecting the motor and the servo driver have been cut off. The tramegger shall be 1000V and its insulation resistance shall be more than $50M\Omega$.

Improper method of insulativity test may damage the servo driver, therefore, we suggest you not conducting the test without permission.

10.4. Replacement of Components & Parts

The life span of the bearing of the cooling fan is ten thousand hours. Thus the bearing needs to be replaced every $3\sim4$ years if it is used continuously. It also needs replacement if there is any abnormal noise or vibration of the fan.

If the aluminium electrolytic capacitor is out of service for a long time, its life span will be shortened. Therefore, you'd better operate the servo driver at least one time every half a year.

11. Accessory Equipments

11.1. Model List of Accessory Equipments

Name	Model	Application			
	DL-50EBK5	7501/1502/1802			
Filter	DL-65EBK5	2502			
	DL-100EBK5	3502/4502			
AC repeter	Parameter	All drivere			
AC leactor	37KW/90A/0.19mH/2%F	An unvers			
	15Ω, 500W	7501/1502/1802			
Braking	10Ω, 1000W	2502			
resistor	1.67Ω, 1500W (3	2502/4502			
	cascaded)	3302/4302			
		During machine conversion, if			
Current transit		the output signal of the host			
box		machine is current signal, then it			
UUX		needs to be converted to voltage			
		signal through the transit box.			
External HMI					
commission	Н038-НА	Commission tool			
panel					

11.2. Selection of Noise Filter

(1) Table of noise filters corresponding to drivers of all

models

SERVO DRIVER	NOISE FILTER			
MODEL	Model	Specifications		
KT-CT-7501-A-0	DL-50EBK5	50A, 320nF		
KT-CT-1502-A-0	DL-50EBK5	50A, 320nF		
KT-CT-1802-A-*	DL-50EBK5	50A, 320nF		
KT-CT-2502-A-1	DL-65EBK5	65A, 320nF		
KT-CT-3502-A-0	DL-100EBK5	100A, 320nF		
KT-CT-4502-A-1	DL-100EBK5	100A, 320nF		

(2) Definitions of filter terminals

LABEL	DEFINITION
А	
В	Input three-phase power
С	
G	Input power earth
A'	
B'	Input three-phase power
C'	
G'	Input power earth

(3) Overall dimensions of the filter (mm)

Model	А	В	С	D	Е	F	G	Н	Ι	J	K	М	N	Р	L
DL-50EBK5	2/12	224	265	58	70	102	25	02	M6	58	M4	74	10	M6	6 4 × 0 4
DL-65EBK5	243 2	224	205	20	70	102	23	592	2 1010	50	1014	/4	47	IVIO	0.4^9.4
DL-100EBK5	354	323	388	66	155	188	30	92	M8	62	M4	86	56	M8	6.4×9.4

Fix the noise filter in a drafty place with screws and make sure the ground terminals of input and output reliably connected to the system earth. Refer to "4.5.6 Typical wiring instance of the main circuit" for wiring methods.

11.3. Selection & Installation of Braking Resistor

Sorve driver model	Specifications of braking resistors						
Serve univer model	Resistance value Ω	Power W					
KT-CT-7501-A-0	15	500					
KT-CT-1502-A-0	15	500					
KT-CT-1802-A-*	15	500					
KT-CT-2502-A-1	10	1000					
KT-CT-3502-A-0	5	4500					
KT-CT-4502-A-1	5	4500					

Since the servo driver has no built-in braking resistor, the user must match an external one.

If the motor needs the braking resistor of higher power to meet frequent braking, the user can match one with low resistance value and high power when making orders. The external braking resistor shall be installed in a drafty place and be far away from any combustible or heat-resistant parts.

The user must make sure the resistance value is no less than the specified value when installing the external braking resistor by themselves.

(2) Overall dimensions of the braking resistor (mm)

Braking resistor with aluminum case (for driver 7501/1502/1802):

Dimensions of RXLG1000W10RJ (braking resistor for driver 2502):

Corrugated braking resistor (braking resistor for driver 3502/4502, three cascaded):

(b) Configuration chart of driver KT-CT-3502 and its braking resistor (mm)

(c) Configuration chart of driver KT-CT-4502 and its braking resistor (mm)

11.4. Selection of Pressure Transducer

(1) Pressure transducer terminals

(2) Dimensions and installation of pressure transducer

Seal the connection between pressure transducer and oil circuit with the adhesive tape. During installation, fasten the pressure transducer in case of any leakage.

11.5. Selection of External HMI

Refer to the Display & Operation of External HMI in Chapter 5.

Contact Us

Shanghai Kinway Technologies, Inc.

Add.: Building 1, No.188 Xinjun Ring Rd., Pujiang Hi-Tech Park., Shanghai, China

P.C.: 201114

Tel.: +86-21-34637660

Fax: +86-21-34637667

Web: www.kinwaytech.com

Suzhou Kinway Technologies, Inc.

Add.: Unit 11-104, Creativity Center, No. 328 Xinghu Rd., Suzhou Industrial Park, Jiangsu Province, China P.C.: 215123 Tel.: +86-512-82272318 Fax: +86-512-82272319

Shengze Office

Add.: No. 126, Building 16, Xujing Park, Shengze Town, Wujiang
City, Jiangsu Province, China
P.C.: 215228
Tel.: 0512-63537191
Fax: 0512-63537191

Shengzhen office

Add.: 6th F, Building 5, Gaofa Industrial Park, Longjing, Nanshan District, Shenzhen, China Tel.: +86-755-26966810/26966997 Fax: +86-755-26966252

Shunde Office

Add: Room 308, Bld. B, Zicui Loft, Linglan Garden, Daliang Nanguo Mid Rd, Shunde District, Foshan, Guangdong, China Tel: +86-757-22913340 Fax: +86-757-22913340

Ningbo office

Add.: 16 F, North Buliding, Yinzhou Chamber of Commerce Plaza, No. 1299, East Yinxian Avenue, Yinzhou District, Ningbo, Zhejiang, China Tel.: +86-574-88193885 Fax: +86-574-88193900

Jinan Office

Add.: Room 2101, Unit 1, Building 5, Guohua Classics, No. 30Jiefang Rd., Jinan, Shandong Province, ChinaTel.: 0531-81186860Fax: 0531-88873650/88873652

Taizhou Office

Add.: Room 601, Unit 1, Building 16, Lily Home, HuangyanDistrict, Taizhou, Zhejiang Province, ChinaTel.: 0576-82913586Fax: 0576-82913586

Wuxi Office

Add.: Room 1001, Building 65, Cambridge Scene, Beitang District,Wuxi, Jiangsu Province, ChinaTel.: 0510-82390516Fax: 0510-82390516